296 research outputs found

    Utilizing graph-based representation of text in a hybrid approach to multiple documents summarization

    Get PDF
    The aim of automatic text summarization is to process text with the purpose of identifying and presenting the most important information appearing in the text. In this research, we aim to investigate automatic multiple document summarization using a hybrid approach of extractive and “shallow abstractive methods. We aim to utilize the graph-based representation approach proposed in [1] and [2] as part of our method to multiple document summarization aiming to provide concise, informative and coherent summaries. We start by scoring sentences based on significance to extract top scoring ones from each document of the set of documents being summarized. In this step, we look into different criteria of scoring sentences, which include: the presence of highly frequent words of the document, the presence of highly frequent words of the set of documents and the presence of words found in the first and last sentence of the document and the different combination of such features. Upon running our experiments we found that the best combination of features to use is utilizing the presence of highly frequent words of the document and presence of words found in the first and last sentences of the document. The average f-score of those features had an average of 7.9% increase to other features\u27 f-scores. Secondly, we address the issue of redundancy of information through clustering sentences of same or similar information into one cluster that will be compressed into one sentence, thus avoiding redundancy of information as much as possible. We investigated clustering the extracted sentences based on two criteria for similarity, the first of which uses word frequency vector for similarity measure and the second of which uses word semantic similarity. Through our experiment, we found that the use of the word vector features yields much better clusters in terms of sentence similarity. The word feature vector had a 20% more number of clusters labeled to contain similar sentences as opposed to those of the word semantic feature. We then adopted a graph-based representation of text proposed in [1] and [2] to represent each sentence in a cluster, and using the k-shortest paths we found the shortest path to represent the final compressed sentence and use it as a final sentence in the summary. Human evaluator scored sentences based on grammatical correctness and almost 74% of 51 sentences evaluated got a perfect score of 2 which is a perfect or near perfect sentence. We finally propose a method for scoring the compressed sentences according to the order in which they should appear in the final summary. We used the Document Understanding Conference dataset for year 2014 as the evaluating dataset for our final system. We used the ROUGE system for evaluation which stands for Recall-Oriented Understudy for Gisting Evaluation. This system compare the automatic summaries to “ideal human references. We also compared our summaries ROUGE scores to those of summaries generated using the MEAD summarization tool. Our system provided better precision and f-score as well as comparable recall scores. On average our system has a percentage increase of 2% for precision and 1.6% increase in f-score than those of MEAD while MEAD has an increase of 0.8% in recall. In addition, our system provided more compressed version of the summary as opposed to that generated by MEAD. We finally ran an experiment to evaluate the order of sentences in the final summary and its comprehensibility where we show that our ordering method produced a comprehensible summary. On average, summaries that scored a perfect score in term of comprehensibility constitute 72% of the evaluated summaries. Evaluators were also asked to count the number of ungrammatical and incomprehensible sentences in the evaluated summaries and on average they were only 10.9% of the summaries sentences. We believe our system provide a \u27shallow abstractive summary to multiple documents that does not require intensive Natural Language Processing.

    NLP Driven Models for Automatically Generating Survey Articles for Scientific Topics.

    Full text link
    This thesis presents new methods that use natural language processing (NLP) driven models for summarizing research in scientific fields. Given a topic query in the form of a text string, we present methods for finding research articles relevant to the topic as well as summarization algorithms that use lexical and discourse information present in the text of these articles to generate coherent and readable extractive summaries of past research on the topic. In addition to summarizing prior research, good survey articles should also forecast future trends. With this motivation, we present work on forecasting future impact of scientific publications using NLP driven features.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113407/1/rahuljha_1.pd

    Automatic Summarization

    Get PDF
    It has now been 50 years since the publication of Luhn’s seminal paper on automatic summarization. During these years the practical need for automatic summarization has become increasingly urgent and numerous papers have been published on the topic. As a result, it has become harder to find a single reference that gives an overview of past efforts or a complete view of summarization tasks and necessary system components. This article attempts to fill this void by providing a comprehensive overview of research in summarization, including the more traditional efforts in sentence extraction as well as the most novel recent approaches for determining important content, for domain and genre specific summarization and for evaluation of summarization. We also discuss the challenges that remain open, in particular the need for language generation and deeper semantic understanding of language that would be necessary for future advances in the field

    Towards Personalized and Human-in-the-Loop Document Summarization

    Full text link
    The ubiquitous availability of computing devices and the widespread use of the internet have generated a large amount of data continuously. Therefore, the amount of available information on any given topic is far beyond humans' processing capacity to properly process, causing what is known as information overload. To efficiently cope with large amounts of information and generate content with significant value to users, we require identifying, merging and summarising information. Data summaries can help gather related information and collect it into a shorter format that enables answering complicated questions, gaining new insight and discovering conceptual boundaries. This thesis focuses on three main challenges to alleviate information overload using novel summarisation techniques. It further intends to facilitate the analysis of documents to support personalised information extraction. This thesis separates the research issues into four areas, covering (i) feature engineering in document summarisation, (ii) traditional static and inflexible summaries, (iii) traditional generic summarisation approaches, and (iv) the need for reference summaries. We propose novel approaches to tackle these challenges, by: i)enabling automatic intelligent feature engineering, ii) enabling flexible and interactive summarisation, iii) utilising intelligent and personalised summarisation approaches. The experimental results prove the efficiency of the proposed approaches compared to other state-of-the-art models. We further propose solutions to the information overload problem in different domains through summarisation, covering network traffic data, health data and business process data.Comment: PhD thesi

    Enhancing extractive summarization with automatic post-processing

    Get PDF
    Tese de doutoramento, Informática (Ciência da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015Any solution or device that may help people to optimize their time in doing productive work is of a great help. The steadily increasing amount of information that must be handled by each person everyday, either in their professional tasks or in their personal life, is becoming harder to be processed. By reducing the texts to be handled, automatic text summarization is a very useful procedure that can help to reduce significantly the amount of time people spend in many of their reading tasks. In the context of handling several texts, dealing with redundancy and focusing on relevant information the major problems to be addressed in automatic multi-document summarization. The most common approach to this task is to build a summary with sentences retrieved from the input texts. This approach is named extractive summarization. The main focus of current research on extractive summarization has been algorithm optimization, striving to enhance the selection of content. However, gains related to the increasing of algorithms complexity have not yet been proved, as the summaries remain difficult to be processed by humans in a satisfactory way. A text built fromdifferent documents by extracting sentences fromthemtends to form a textually fragile sequence of sentences, whose elements tend to be weakly related. In the present work, tasks that modify and relate the summary sentences are combined in a post-processing procedure. These tasks include sentence reduction, paragraph creation and insertion of discourse connectives, seeking to improve the textual quality of the final summary to be delivered to human users. Thus, this dissertation addresses automatic text summarization in a different perspective, by exploring the impact of the postprocessing of extraction-based summaries in order to build fluent and cohesive texts and improved summaries for human usage.Qualquer solução ou dispositivo que possa ajudar as pessoas a optimizar o seu tempo, de forma a realizar tarefas produtivas, é uma grande ajuda. A quantidade de informação que cada pessoa temque manipular, todos os dias, seja no trabalho ou na sua vida pessoal, é difícil de ser processada. Ao comprimir os textos a serem processados, a sumarização automática é uma tarefa muito útil, que pode reduzir significativamente a quantidade de tempo que as pessoas despendem em tarefas de leitura. Lidar com a redundância e focar na informação relevante num conjunto de textos são os principais objectivos da sumarização automática de vários documentos. A abordagem mais comum para esta tarefa consiste em construirse o resumo com frases obtidas a partir dos textos originais. Esta abordagem é conhecida como sumarização extractiva. O principal foco da investigação mais recente sobre sumarização extrativa é a optimização de algoritmos que visam obter o conteúdo relevante expresso nos textos originais. Porém, os ganhos relacionados com o aumento da complexidade destes algoritmos não foram ainda comprovados, já que os sumários continuam a ser difíceis de ler. É expectável que um texto, cujas frases foram extraídas de diferentes fontes, forme uma sequência frágil, sobretudo pela falta de interligação dos seus elementos. No contexto deste trabalho, tarefas que modificam e relacionam frases são combinadas numprocedimento denominado pós-processamento. Estas tarefas incluem a simplificação de frases, a criação de parágrafos e a inserção de conectores de discurso, que juntas procurammelhorar a qualidade do sumário final. Assim, esta dissertação aborda a sumarização automática numa perspectiva diferente, estudando o impacto do pós-processamento de um sumário extractivo, a fim de produzir um texto final fluente e coeso e em vista de se obter uma melhor qualidade textual.Fundação para a Ciência e a Tecnologia (FCT), SFRH/BD/45133/200

    Data Mining Techniques to Understand Textual Data

    Get PDF
    More than ever, information delivery online and storage heavily rely on text. Billions of texts are produced every day in the form of documents, news, logs, search queries, ad keywords, tags, tweets, messenger conversations, social network posts, etc. Text understanding is a fundamental and essential task involving broad research topics, and contributes to many applications in the areas text summarization, search engine, recommendation systems, online advertising, conversational bot and so on. However, understanding text for computers is never a trivial task, especially for noisy and ambiguous text such as logs, search queries. This dissertation mainly focuses on textual understanding tasks derived from the two domains, i.e., disaster management and IT service management that mainly utilizing textual data as an information carrier. Improving situation awareness in disaster management and alleviating human efforts involved in IT service management dictates more intelligent and efficient solutions to understand the textual data acting as the main information carrier in the two domains. From the perspective of data mining, four directions are identified: (1) Intelligently generate a storyline summarizing the evolution of a hurricane from relevant online corpus; (2) Automatically recommending resolutions according to the textual symptom description in a ticket; (3) Gradually adapting the resolution recommendation system for time correlated features derived from text; (4) Efficiently learning distributed representation for short and lousy ticket symptom descriptions and resolutions. Provided with different types of textual data, data mining techniques proposed in those four research directions successfully address our tasks to understand and extract valuable knowledge from those textual data. My dissertation will address the research topics outlined above. Concretely, I will focus on designing and developing data mining methodologies to better understand textual information, including (1) a storyline generation method for efficient summarization of natural hurricanes based on crawled online corpus; (2) a recommendation framework for automated ticket resolution in IT service management; (3) an adaptive recommendation system on time-varying temporal correlated features derived from text; (4) a deep neural ranking model not only successfully recommending resolutions but also efficiently outputting distributed representation for ticket descriptions and resolutions

    How Local is the Local Diversity? Reinforcing Sequential Determinantal Point Processes with Dynamic Ground Sets for Supervised Video Summarization

    Full text link
    The large volume of video content and high viewing frequency demand automatic video summarization algorithms, of which a key property is the capability of modeling diversity. If videos are lengthy like hours-long egocentric videos, it is necessary to track the temporal structures of the videos and enforce local diversity. The local diversity refers to that the shots selected from a short time duration are diverse but visually similar shots are allowed to co-exist in the summary if they appear far apart in the video. In this paper, we propose a novel probabilistic model, built upon SeqDPP, to dynamically control the time span of a video segment upon which the local diversity is imposed. In particular, we enable SeqDPP to learn to automatically infer how local the local diversity is supposed to be from the input video. The resulting model is extremely involved to train by the hallmark maximum likelihood estimation (MLE), which further suffers from the exposure bias and non-differentiable evaluation metrics. To tackle these problems, we instead devise a reinforcement learning algorithm for training the proposed model. Extensive experiments verify the advantages of our model and the new learning algorithm over MLE-based methods
    • …
    corecore