687 research outputs found

    An Expert System Based on Least Mean Square and Neural Network for Classification of Power System Disturbances

    Get PDF
    This paper proposes a new solution method for power quality (PQ) classification using least mean square (LMS) and neural network (NN). The proposed hybrid LMS-NN method comprises of LMS based effective feature extractor and PQ classifier based on a multi layer perceptron neural network (MLP-NN). First, the LMS method is employed to estimate the efficient features such as amplitude, slope, and harmonic indication from the measured voltage signals where the developed structure is merely simple. Further, the PQ classification is executed with the aid of MLP-NN. The different voltage signals analyzed for this research work are pure sine, sag, swell, outage, harmonics, sag with harmonics, and swell with harmonics. The performance and efficiency of the presented hybrid LMS-NN classifier is assessed by testing total 1400 voltage samples which are simulated based on PQ disturbance model. The rate of average correct classification is about 96.71 for the different PQ disturbance signals under noise conditions

    Power Quality Management and Classification for Smart Grid Application using Machine Learning

    Get PDF
    The Efficient Wavelet-based Convolutional Transformer network (EWT-ConvT) is proposed to detect power quality disturbances in time-frequency domain using attention mechanism. The support of machine learning further improves the network accuracy with synthetic signal generation and less system complexity under practical environment. The proposed EWT-ConvT can achieve 94.42% accuracy which is superior than other deep learning models. The detection of disturbances using EWT-ConvT can also be implemented into smart grid applications for real-time embedded system development

    Automatic classification of power quality disturbances using optimal feature selection based algorithm

    Get PDF
    The development of renewable energy sources and power electronic converters in conventional power systems leads to Power Quality (PQ) disturbances. This research aims at automatic detection and classification of single and multiple PQ disturbances using a novel optimal feature selection based on Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN). DWT is used for the extraction of useful features, which are used to distinguish among different PQ disturbances by an ANN classifier. The performance of the classifier solely depends on the feature vector used for the training. Therefore, this research is required for the constructive feature selection based classification system. In this study, an Artificial Bee Colony based Probabilistic Neural Network (ABCPNN) algorithm has been proposed for optimal feature selection. The most common types of single PQ disturbances include sag, swell, interruption, harmonics, oscillatory and impulsive transients, flicker, notch and spikes. Moreover, multiple disturbances consisting of combination of two disturbances are also considered. The DWT with multi-resolution analysis has been applied to decompose the PQ disturbance waveforms into detail and approximation coefficients at level eight using Daubechies wavelet family. Various types of statistical parameters of all the detail and approximation coefficients have been analysed for feature extraction, out of which the optimal features have been selected using ABC algorithm. The performance of the proposed algorithm has been analysed with different architectures of ANN such as multilayer perceptron and radial basis function neural network. The PNN has been found to be the most suitable classifier. The proposed algorithm is tested for both PQ disturbances obtained from the parametric equations and typical power distribution system models using MATLAB/Simulink and PSCAD/EMTDC. The PQ disturbances with uniformly distributed noise ranging from 20 to 50 dB have also been analysed. The experimental results show that the proposed ABC-PNN based approach is capable of efficiently eliminating unnecessary features to improve the accuracy and performance of the classifier

    Efficient audio signal processing for embedded systems

    Get PDF
    We investigated two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound "richer" and "fuller," using a combination of bass extension and dynamic range compression. We also developed an audio energy reduction algorithm for loudspeaker power management by suppressing signal energy below the masking threshold. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. We also designed the circuits to implement the AdaBoost-based analog classifier.PhDCommittee Chair: Anderson, David; Committee Member: Hasler, Jennifer; Committee Member: Hunt, William; Committee Member: Lanterman, Aaron; Committee Member: Minch, Bradle

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    Artificial neural network-based harmonics extraction algorithm for shunt active power filter control

    Get PDF
    This paper presents a harmonics extraction algorithm using artificial neural network methods. The neural network algorithm was used due to the simpler calculation process compared with conventional method such as fast Fourier transform (FFT). Two types of neural network, i.e., multi-layer perceptron (MLP) and radial basis function (RBF) were employed to extract harmonics current component from its distorted wave current. Further, the extracted harmonics current was used as reference current for shunt active power filter (APF) control. This paper compared the performance of MLP and RBF for harmonics extraction. The advantages of RBF are simpler shape of the network and faster learning speed. Unfortunately, the RBF need to be trained recursively for various harmonics component. MLP can be used to extract various harmonics component in specific data range but need large number of data training hence slower training process

    Artificial neural network-based harmonics extraction algorithm for shunt active power filter control

    Get PDF
    This paper presents a harmonics extraction algorithm using artificial neural network methods. The neural network algorithm was used due to the simpler calculation process compared with conventional method such as fast Fourier transform (FFT). Two types of neural network, i.e., multi-layer perceptron (MLP) and radial basis function (RBF) were employed to extract harmonics current component from its distorted wave current. Further, the extracted harmonics current was used as reference current for shunt active power filter (APF) control. This paper compared the performance of MLP and RBF for harmonics extraction. The advantages of RBF are simpler shape of the network and faster learning speed. Unfortunately, the RBF need to be trained recursively for various harmonics component. MLP can be used to extract various harmonics component in specific data range but need large number of data training hence slower training process

    Selection of features based on electric power quantities for non-intrusive load monitoring

    Get PDF
    Non-intrusive load monitoring (NILM) is a process of determining the operating states and the energy consumption of single electric devices using a single energy meter providing aggregate load measurements. Due to the large spread of power electronic-based and nonlinear devices connected to the network, the time signals of both voltage and current are typically non-sinusoidal. The effectiveness of a NILM algorithm strongly depends on determining a set of discriminative features. In this paper, voltage and current signals were combined to define, according to the definitions provided in Standard IEEE 1459, different power quantities, that can be used to distinguish different types of appliance. Multi-layer perceptron (MLP) classifiers were trained to solve the appliance detection problem as a multi-class event classification problem, varying the electric features in input. This allowed to select an optimal set of features guarantying good classification performance in identifying typical electric loads

    Smart Distributed Generation System Event Classification using Recurrent Neural Network-based Long Short-term Memory

    Get PDF
    High penetration of distributed generation (DG) sources into a decentralized power system causes several disturbances, making the monitoring and operation control of the system complicated. Moreover, because of being passive, modern DG systems are unable to detect and inform about these disturbances related to power quality in an intelligent approach. This paper proposed an intelligent and novel technique, capable of making real-time decisions on the occurrence of different DG events such as islanding, capacitor switching, unsymmetrical faults, load switching, and loss of parallel feeder and distinguishing these events from the normal mode of operation. This event classification technique was designed to diagnose the distinctive pattern of the time-domain signal representing a measured electrical parameter, like the voltage, at DG point of common coupling (PCC) during such events. Then different power system events were classified into their root causes using long short-term memory (LSTM), which is a deep learning algorithm for time sequence to label classification. A total of 1100 events showcasing islanding, faults, and other DG events were generated based on the model of a smart distributed generation system using a MATLAB/Simulink environment. Classifier performance was calculated using 5-fold cross-validation. The genetic algorithm (GA) was used to determine the optimum value of classification hyper-parameters and the best combination of features. The simulation results indicated that the events were classified with high precision and specificity with ten cycles of occurrences while achieving a 99.17% validation accuracy. The performance of the proposed classification technique does not degrade with the presence of noise in test data, multiple DG sources in the model, and inclusion of motor starting event in training samples

    Support Vector Regression Based S-transform for Prediction of Single and Multiple Power Quality Disturbances

    Get PDF
    This paper presents a novel approach using Support Vector Regression (SVR) based S-transform to predict the classes of single and multiple power quality disturbances in a three-phase industrial power system. Most of the power quality disturbances recorded in an industrial power system are non-stationary and comprise of multiple power quality disturbances that coexist together for only a short duration in time due to the contribution of the network impedances and types of customers’ connected loads. The ability to detect and predict all the types of power quality disturbances encrypted in a voltage signal is vital in the analyses on the causes of the power quality disturbances and in the identification of incipient fault in the networks. In this paper, the performances of two types of SVR based S-transform, the non-linear radial basis function (RBF) SVR based S-transform and the multilayer perceptron (MLP) SVR based S-transform, were compared for their abilities in making prediction for the classes of single and multiple power quality disturbances. The results for the analyses of 651 numbers of single and multiple voltage disturbances gave prediction accuracies of 86.1% (MLP SVR) and 93.9% (RBF SVR) respectively. Keywords: Power Quality, Power Quality Prediction, S-transform, SVM, SV
    corecore