720 research outputs found

    3D Reconstruction Using High Resolution Implicit Surface Representations and Memory Management Strategies

    Get PDF
    La disponibilité de capteurs de numérisation 3D rapides et précis a permis de capturer de très grands ensembles de points à la surface de différents objets qui véhiculent la géométrie des objets. La métrologie appliquée consiste en l'application de mesures dans différents domaines tels que le contrôle qualité, l'inspection, la conception de produits et la rétroingénierie. Une fois que le nuage de points 3D non organisés couvrant toute la surface de l'objet a été capturé, un modèle de la surface doit être construit si des mesures métrologiques doivent être effectuées sur l'objet. Dans la reconstruction 3D en temps réel, à l'aide de scanners 3D portables, une représentation de surface implicite très efficace est le cadre de champ vectoriel, qui suppose que la surface est approchée par un plan dans chaque voxel. Le champ vectoriel contient la normale à la surface et la matrice de covariance des points tombant à l'intérieur d'un voxel. L'approche globale proposée dans ce projet est basée sur le cadre Vector Field. Le principal problème abordé dans ce projet est la résolution de l'incrément de consommation de mémoire et la précision du modèle reconstruit dans le champ vectoriel. Ce tte approche effectue une sélection objective de la taille optimale des voxels dans le cadre de champ vectoriel pour maintenir la consommation de mémoire aussi faible que possible et toujours obtenir un modèle précis de la surface. De plus, un ajustement d e surface d'ordre élevé est utilisé pour augmenter la précision du modèle. Étant donné que notre approche ne nécessite aucune paramétrisation ni calcul complexe, et qu'au lieu de travailler avec chaque point, nous travaillons avec des voxels dans le champ vectoriel, cela réduit la complexité du calcul.The availability of fast and accurate 3D scanning sensors has made it possible to capture very large sets of points at the surface of different objects that convey the geometry of the objects. A pplied metrology consists in the application of measurements in different fields such as quality control, inspection, product design and reverse engineering. Once the cloud of unorganized 3D points covering the entire surface of the object has been capture d, a model of the surface must be built if metrologic measurements are to be performed on the object. In realtime 3D reconstruction, using handheld 3D scanners a very efficient implicit surface representation is the Vector Field framework, which assumes that the surface is approximated by a plane in each voxel. The vector field contains the normal to the surface and the covariance matrix of the points falling inside a voxel. The proposed global approach in this project is based on the Vector Field framew ork. The main problem addressed in this project is solving the memory consumption increment and the accuracy of the reconstructed model in the vector field. This approach performs an objective selection of the optimal voxels size in the vector field frame work to keep the memory consumption as low as possible and still achieve an accurate model of the surface. Moreover, a highorder surface fitting is used to increase the accuracy of the model. Since our approach do not require any parametrization and compl ex calculation, and instead of working with each point we are working with voxels in the vector field, then it reduces the computational complexity

    A triangulation-invariant method for anisotropic geodesic map computation on surface meshes

    Get PDF
    pre-printThis paper addresses the problem of computing the geodesic distance map from a given set of source vertices to all other vertices on a surface mesh using an anisotropic distance metric. Formulating this problem as an equivalent control theoretic problem with Hamilton-Jacobi-Bellman partial differential equations, we present a framework for computing an anisotropic geodesic map using a curvature-based speed function. An ordered upwind method (OUM)-based solver for these equations is available for unstructured planar meshes. We adopt this OUM-based solver for surface meshes and present a triangulation-invariant method for the solver. Our basic idea is to explore proximity among the vertices on a surface while locally following the characteristic direction at each vertex. We also propose two speed functions based on classical curvature tensors and show that the resulting anisotropic geodesic maps reflect surface geometry well through several experiments, including isocontour generation, offset curve computation, medial axis extraction, and ridge/valley curve extraction. Our approach facilitates surface analysis and processing by defining speed functions in an application-dependent manner

    Segmentation And Spatial Depth Ridge Detection Of Unorganized Point Cloud Data

    Get PDF
    Visual 3D data are of interest to a number of fields: medical professionals, game designers, graphic designers, and (in the interest of this paper) ichthyologists interested in the taxonomy of fish. Since the release of the Kinect for the Microsoft XBox, game designers have been interested in using the 3D data returned by the device to understand human movement and translate that movement into an interface with which to interact with game systems. In the medical field, researchers must use computer vision tools to navigate through the data found in CT scans and MRI scans. These tools must segment images into the parts that are relevant to researchers and account for noise related to the scanning process all while ignoring other types of noise such as foreign elements in the body that might indicate signs of illness. 3D point cloud data represents some unique challenges. Consider an object scanned with a laser scanner. The scanner returns the surface points of the object, but nothing more. Using the tool Qhull, a researcher can quickly compute the convex hull of an object (which is an interesting challenge in itself), but the convex hull (obviously) leaves out any description of an object\u27s concave features. Several algorithms have been proposed to illustrate an object\u27s complete features based on unorganized 3D point cloud data as accurately as possible, most notably Boissonnat\u27s tetrahedral culling algorithm and The Power Crust algorithm. We introduce a new approach to the area partitioning problem that takes into consideration these algorithms\u27 strengths and weaknesses. In this paper we propose a methodology for approximating a shape\u27s solid geometry using the unorganized 3D point cloud data of that shape primarily by utilizing localized principal component analysis information. Our model accounts for three comissues that arise in the scanning of 3D objects: noise in surface points, poorly sampled surface area, and narrow corners. We explore each of these areas of concern and outline our approach to each. Our technique uses a growing algorithm that labels points as it progresses and uses those labels with a simple priority queue. We found that our approach works especially well for approximating surfaces under the condition where a local surface is poorly sampled (i.e a significant hole is present in the point cloud). We then turn to study the medial axis of a shape for the purposes of `unfolding\u27 that structure. Our approach uses a ridge formulation based on the spatial depth statistic to create the medial axis. We conclude the paper with visual results of our technique

    Extraction robuste de primitives géométriques 3D dans un nuage de points et alignement basé sur les primitives

    Get PDF
    Dans ce projet, nous étudions les problèmes de rétro-ingénierie et de contrôle de la qualité qui jouent un rôle important dans la fabrication industrielle. La rétro-ingénierie tente de reconstruire un modèle 3D à partir de nuages de points, qui s’apparente au problème de la reconstruction de la surface 3D. Le contrôle de la qualité est un processus dans lequel la qualité de tous les facteurs impliqués dans la production est abordée. En fait, les systèmes ci-dessus nécessitent beaucoup d’intervention de la part d’un utilisateur expérimenté, résultat souhaité est encore loin soit une automatisation complète du processus. Par conséquent, de nombreux défis doivent encore être abordés pour atteindre ce résultat hautement souhaitable en production automatisée. La première question abordée dans la thèse consiste à extraire les primitives géométriques 3D à partir de nuages de points. Un cadre complet pour extraire plusieurs types de primitives à partir de données 3D est proposé. En particulier, une nouvelle méthode de validation est proposée pour évaluer la qualité des primitives extraites. À la fin, toutes les primitives présentes dans le nuage de points sont extraites avec les points de données associés et leurs paramètres descriptifs. Ces résultats pourraient être utilisés dans diverses applications telles que la reconstruction de scènes on d’édifices, la géométrie constructive et etc. La seconde question traiée dans ce travail porte sur l’alignement de deux ensembles de données 3D à l’aide de primitives géométriques, qui sont considérées comme un nouveau descripteur robuste. L’idée d’utiliser les primitives pour l’alignement arrive à surmonter plusieurs défis rencontrés par les méthodes d’alignement existantes. Ce problème d’alignement est une étape essentielle dans la modélisation 3D, la mise en registre, la récupération de modèles. Enfin, nous proposons également une méthode automatique pour extraire les discontinutés à partir de données 3D d’objets manufacturés. En intégrant ces discontinutés au problème d’alignement, il est possible d’établir automatiquement les correspondances entre primitives en utilisant l’appariement de graphes relationnels avec attributs. Nous avons expérimenté tous les algorithmes proposés sur différents jeux de données synthétiques et réelles. Ces algorithmes ont non seulement réussi à accomplir leur tâches avec succès mais se sont aussi avérés supérieus aux méthodes proposées dans la literature. Les résultats présentés dans le thèse pourraient s’avérér utilises à plusieurs applications.In this research project, we address reverse engineering and quality control problems that play significant roles in industrial manufacturing. Reverse engineering attempts to rebuild a 3D model from the scanned data captured from a object, which is the problem similar to 3D surface reconstruction. Quality control is a process in which the quality of all factors involved in production is monitored and revised. In fact, the above systems currently require significant intervention from experienced users, and are thus still far from being fully automated. Therefore, many challenges still need to be addressed to achieve the desired performance for automated production. The first proposition of this thesis is to extract 3D geometric primitives from point clouds for reverse engineering and surface reconstruction. A complete framework to extract multiple types of primitives from 3D data is proposed. In particular, a novel validation method is also proposed to assess the quality of the extracted primitives. At the end, all primitives present in the point cloud are extracted with their associated data points and descriptive parameters. These results could be used in various applications such as scene and building reconstruction, constructive solid geometry, etc. The second proposition of the thesis is to align two 3D datasets using the extracted geometric primitives, which is introduced as a novel and robust descriptor. The idea of using primitives for alignment is addressed several challenges faced by existing registration methods. This alignment problem is an essential step in 3D modeling, registration and model retrieval. Finally, an automatic method to extract sharp features from 3D data of man-made objects is also proposed. By integrating the extracted sharp features into the alignment framework, it is possible implement automatic assignment of primitive correspondences using attribute relational graph matching. Each primitive is considered as a node of the graph and an attribute relational graph is created to provide a structural and relational description between primitives. We have experimented all the proposed algorithms on different synthetic and real scanned datasets. Our algorithms not only are successful in completing their tasks with good results but also outperform other methods. We believe that the contribution of them could be useful in many applications

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces

    Draft Environmental Impact Statement : Dickey-Lincoln School Lakes Transmission Project

    Get PDF
    This draft environmental impact statement (EIS) will describe the environmental impacts of transmission plans of the Department of Energy (DOE) for the proposed Dickey-Lincoln School Lakes Project. Electric power produced by the project is to be integrated into the New England electric system if the project is constructed
    • …
    corecore