125 research outputs found

    Automatic extraction of potential impact structures from geospatial data : examples from Finnmark, Northern Norway

    Get PDF
    Impact cratering is a fundamental process in the Solar System, and on solid planetary bodies like Mars and the Moon, impact cratering may be the most prominent landforming process. On the Earth several processes compete in shaping the surface. Consequently, the impact structures on Earth are often poorly preserved, difficult to spot and found in limited numbers (per 2010, 176). The impact crater formation process results in a circular shape of fresh craters, except for impacts at low angles. This circularity is found in e.g. morphology, the distribution of impact rocks and in geophysical anomalies. The analytical choice is then to use the circular shape as a feature descriptor in search approaches. This thesis describes techniques applied to automatic extract circular features from appropriate geospatial datasets, i.e. to locate potential impact structures. The data cover parts of Finnmark county, Northern Norway, and include digital elevation models, geophysical potential field data and multispectral images. Remote sensing or image analysis methodologies can only detect potential impact structures, the most promising structures for further field studies. Evidence must later come from sampled rocks. An impact structure search should not be based on a single technique or a single dataset because of the diverse impact crater catalog, but rather a combination of several techniques applied on various data. Unlike previous terrestrial search approaches of purely visual analysis of data or the use of automatic techniques relevant to only a limited set of data, the presented methodology offers a framework to search large regions and several types of data to extract promising structures prior to the visual inspection

    Study of quantitative methods for LEM LANDING-SITE selection Final report

    Get PDF
    Mathematical, statistical, and optical-Fourier methods for lunar excursion module landing site selectio

    Reports of Planetary Geology and Geophysics Program, 1990

    Get PDF
    Abstracts of reports from NASA's Planetary Geology and Geophysics Program are presented. Research is documented in summary form of the work conducted. Each report reflects significant accomplishments within the area of the author's funded grant or contract

    Papers presented to the International Colloquium on Venus

    Get PDF
    This volume contains short papers that have been accepted for the International Colloquium on Venus, August 10-12, Pasadena, California. The Program Committee consisted of Stephen Saunders (Jet Propulsion Laboratory) and Sean C. Solomon (Massachusetts Institute of Technology). Chairmen: Raymond Arvison (Washington University); Vassily Moroz (Institute for Space Research); Donald B. Campbell (Cornell University); Thomas Donahue (University of Michigan); James W. Head III (Brown University); Pamela Jones (Lunar and Planetary Institute); Mona Jasnow, Andrew Morrison, Timothy Pardker, Jeffrey Plaut, Ellen Stofan, Tommy Thompson, Cathy Weitz (Jet Propulsion Laboratory); Gordon Pettengil (Massachusetts Institute of Technology); and Janet Luhmann (University of California, Los Angeles)

    Reports of planetary geology and geophysics program, 1988

    Get PDF
    This is a compilation of abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1988. Each report reflects significant accomplishments within the area of the author's funded grant or contract

    Tectonic History of the Terrestrial Planets

    Get PDF
    The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia

    Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    Get PDF
    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration

    Reports of planetary geology program, 1980

    Get PDF
    This is a compilation of abstracts of reports which summarize work conducted in the Planetary Geology Program. Each report reflects significant accomplishments within the area of the author's funded grant or contract

    Reports of planetary geology and geophysics program, 1989

    Get PDF
    Abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program are compiled. The research conducted under this program during 1989 is summarized. Each report includes significant accomplishments in the area of the author's funded grant or contract

    Scientific results of the NASA-sponsored study project on Mars : evolution of volcanism, tectonics, and volatiles

    Get PDF
    The objectives of the project are to outline the volcanic and tectonic history of Mars; to determine the influence of volatiles on Martian volcanic and tectonic processes; and to attempt to determine the compositional, thermal, and volatile history of Mars from its volcanic and tectonic evolution. Available data sets were used to test general models of the volcanic and tectonic history of Mars.Sean C. Solomon, Virgil L. Sharpton, James R. Zimbelman.Martian Magmas and Mantle Source Regions: Current Experimental and Petrochemical Constraints / Holloway, J.R. -- Geophysics at Mars: Issues and Answers / Phillips, R.J. -- Martian Geologic "Revolutions": A Tale of Two Processes / Tanaka, K.L. -- Martian impact craters: Continuing analysis of lobate ejecta sinuosity / Barlow, Nadine G. -- Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling / Bills, Bruce
    corecore