656 research outputs found

    RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection

    Full text link
    The brain electrical activity presents several short events during sleep that can be observed as distinctive micro-structures in the electroencephalogram (EEG), such as sleep spindles and K-complexes. These events have been associated with biological processes and neurological disorders, making them a research topic in sleep medicine. However, manual detection limits their study because it is time-consuming and affected by significant inter-expert variability, motivating automatic approaches. We propose a deep learning approach based on convolutional and recurrent neural networks for sleep EEG event detection called Recurrent Event Detector (RED). RED uses one of two input representations: a) the time-domain EEG signal, or b) a complex spectrogram of the signal obtained with the Continuous Wavelet Transform (CWT). Unlike previous approaches, a fixed time window is avoided and temporal context is integrated to better emulate the visual criteria of experts. When evaluated on the MASS dataset, our detectors outperform the state of the art in both sleep spindle and K-complex detection with a mean F1-score of at least 80.9% and 82.6%, respectively. Although the CWT-domain model obtained a similar performance than its time-domain counterpart, the former allows in principle a more interpretable input representation due to the use of a spectrogram. The proposed approach is event-agnostic and can be used directly to detect other types of sleep events.Comment: 8 pages, 5 figures. In proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN 2020

    Brain Age from the Electroencephalogram of Sleep

    Get PDF
    The human electroencephalogram (EEG) of sleep undergoes profound changes with age. These changes can be conceptualized as "brain age", which can be compared to an age norm to reflect the deviation from normal aging process. Here, we develop an interpretable machine learning model to predict brain age based on two large sleep EEG datasets: the Massachusetts General Hospital sleep lab dataset (MGH, N = 2,621) covering age 18 to 80; and the Sleep Hearth Health Study (SHHS, N = 3,520) covering age 40 to 80. The model obtains a mean absolute deviation of 8.1 years between brain age and chronological age in the healthy participants in the MGH dataset. As validation, we analyze a subset of SHHS containing longitudinal EEGs 5 years apart, which shows a 5.5 years difference in brain age. Participants with neurological and psychiatric diseases, as well as diabetes and hypertension medications show an older brain age compared to chronological age. The findings raise the prospect of using sleep EEG as a biomarker for healthy brain aging

    Detection of EEG K-complexes using fractal dimension of time-frequency images technique coupled with undirected graph features

    Get PDF
    K-complexes identification is a challenging task in sleep research. The detection of k-complexes in electroencephalogram (EEG) signals based on visual inspection is time consuming, prone to errors, and requires well-trained knowledge. Many existing methods for k-complexes detection rely mainly on analyzing EEG signals in time and frequency domains. In this study, an efficient method is proposed to detect k-complexes from EEG signals based on fractal dimension (FD) of time frequency (T-F) images coupled with undirected graph features. Firstly, an EEG signal is partitioned into smaller segments using a sliding window technique. Each EEG segment is passed through a spectrogram of short time Fourier transform (STFT) to obtain the T-F images. Secondly, the box counting method is applied to each T-F image to discover the FDs in EEG signals. A vector of FD features are extracted from each T-F image and then mapped into an undirected graph. The structural properties of the graphs are used as the representative features of the original EEG signals for the input of a least square support vector machine (LS-SVM) classifier. Key graphic features are extracted from the undirected graphs. The extracted graph features are forwarded to the LS-SVM for classification. To investigate the classification ability of the proposed feature extraction combined with the LS-SVM classifier, the extracted features are also forwarded to a k-means classifier for comparison. The proposed method is compared with several existing k-complexes detection methods in which the same datasets were used. The findings of this study shows that the proposed method yields better classification results than other existing methods in the literature. An average accuracy of 97% for the detection of the k-complexes is obtained using the proposed method. The proposed method could lead to an efficient tool for the scoring of automatic sleep stages which could be useful for doctors and neurologists in the diagnosis and treatment of sleep disorders and for sleep research

    Improving time–frequency domain sleep EEG classification via singular spectrum analysis

    Get PDF
    Background: Manual sleep scoring is deemed to be tedious and time consuming. Even among automatic methods such as Time-Frequency (T-F) representations, there is still room for more improvement. New method: To optimise the efficiency of T-F domain analysis of sleep electroencephalography (EEG) a novel approach for automatically identifying the brain waves, sleep spindles, and K-complexes from the sleep EEG signals is proposed. The proposed method is based on singular spectrum analysis (SSA). The single-channel EEG signal (C3-A2) is initially decomposed and then the desired components are automatically separated. In addition, the noise is removed to enhance the discrimination ability of features. The obtained T-F features after preprocessing stage are classified using a multi-class support vector machines (SVM) and used for the identification of four sleep stages over three sleep types. Furthermore, to emphasize on the usefulness of the proposed method the automatically-determined spindles are parameterised to discriminate three sleep types. Result: The four sleep stages are classified through SVM twice: with and without preprocessing stage. The mean accuracy, sensitivity, and specificity for before the preprocessing stage are: 71.5 ± 0.11%, 56.1 ± 0.09% and 86.8 ± 0.04% respectively. However, these values increase significantly to 83.6 ± 0.07%, 70.6 ± 0.14% and 90.8 ± 0.03% after applying SSA. Comparison with existing method: The new T-F representation has been compared with the existing benchmarks. Our results prove that, the proposed method well outperforms the previous methods in terms of identification and representation of sleep stages. Conclusion: Experimental results confirm the performance improvement in terms of classification rate and also representative T-F domain

    Feature extraction of human sleep EEG signals using Wavelet Transform and Fourier Transform

    Get PDF
    Electroencephalogram (EEG) is a complex signal resulting from postsynaptic potentials of cortical pyramidal cells and an important brain state indicator with specific state dependent features. Modern brain research is intimately linked to the feasibility to record the EEG and to its quantitative analysis. EEG spectral analysis is an important method to investigate the hidden properties and hence the brain activities. Spectral analysis of sleep EEG signal provides acute insight into the features of different stages of sleep which can be utilized to differentiate between normal and pathological conditions. This paper describes the process of extracting features of human sleep EEG signals through the use of multi resolution Discrete Wavelet Transform and Fast Fourier Transform. Discrete Wavelet Transform offers representations of the signals in the time-frequency plane giving information regarding the time localization of the spectral components at different stages of sleep in human beings and Fast Fourier Transform provides the spectral information. This paper also discusses the clinical correlation associated with sleep EEG signals in brief

    Independent Component Analysis for Source Localization of EEG Sleep Spindle Components

    Get PDF
    Sleep spindles are bursts of sleep electroencephalogram (EEG) quasirhythmic activity within the frequency band of 11–16 Hz, characterized by progressively increasing, then gradually decreasing amplitude. The purpose of the present study was to process sleep spindles with Independent Component Analysis (ICA) in order to investigate the possibility of extracting, through visual analysis of the spindle EEG and visual selection of Independent Components (ICs), spindle “components” (SCs) corresponding to separate EEG activity patterns during a spindle, and to investigate the intracranial current sources underlying these SCs. Current source analysis using Low-Resolution Brain Electromagnetic Tomography (LORETA) was applied to the original and the ICA-reconstructed EEGs. Results indicated that SCs can be extracted by reconstructing the EEG through back-projection of separate groups of ICs, based on a temporal and spectral analysis of ICs. The intracranial current sources related to the SCs were found to be spatially stable during the time evolution of the sleep spindles

    Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury

    Get PDF
    Aim To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). Method This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. Results We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual-level prediction of unilateral CP was seen in the centro-occipital spindles with an overall accuracy of 93%. An empiric cut-off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. Interpretation Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury.Peer reviewe

    Spectral Power Time-courses of Human Sleep EEG Reveal a Striking Discontinuity at ∼18 Hz Marking the Division between NREM-specific and Wake/REM-specific Fast Frequency Activity

    Get PDF
    Spectral power time-courses over the ultradian cycle of the sleep electroencephalogram (EEG) provide a useful window for exploring the temporal correlation between cortical EEG and sub-cortical neuronal activities. Precision in the measurement of these time-courses is thus important, but it is hampered by lacunae in the definition of the frequency band limits that are in the main based on wake EEG conventions. A frequently seen discordance between the shape of the beta power time-course across the ultradian cycle and that reported for the sequential mean firing rate of brainstem-thalamic activating neurons invites a closer examination of these band limits, especially since the sleep EEG literature indicates in several studies an intriguing non-uniformity of time-course comportment across the traditional beta band frequencies. We ascribe this tentatively to the sharp reversal of slope we have seen at ∼18 Hz in our data and that of others. Here, therefore, using data for the first four ultradian cycles from 18 healthy subjects, we apply several criteria based on changes in time-course comportment in order to examine this non-uniformity as we move in 1 Hz bins through the frequency range 14-30 Hz. The results confirm and describe in detail the striking discontinuity of shape at around 18 Hz, with only the upper range (18-30 Hz) displaying a time-course similar to that of the firing-rate changes measured in brainstem activating neurons and acknowledged to engender states of brain activation. Fast frequencies in the lower range (15-18 Hz), on the other hand, are shown to be specific to non-rapid-eye-movement sleep. Splitting the beta band at ∼18 Hz therefore permits a significant improvement in EEG measurement and a more precise correlation with cellular activit
    corecore