798 research outputs found

    Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    Get PDF
    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal sur-face (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98 percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an opti-mization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better partitioning of curved brains into cerebral hemispheres. 1

    Content based retrieval of PET neurological images

    Get PDF
    Medical image management has posed challenges to many researchers, especially when the images have to be indexed and retrieved using their visual content that is meaningful to clinicians. In this study, an image retrieval system has been developed for 3D brain PET (Position emission tomography) images. It has been found that PET neurological images can be retrieved based upon their diagnostic status using only data pertaining to their content, and predominantly the visual content. During the study PET scans are spatially normalized, using existing techniques, and their visual data is quantified. The mid-sagittal-plane of each individual 3D PET scan is found and then utilized in the detection of abnormal asymmetries, such as tumours or physical injuries. All the asymmetries detected are referenced to the Talairarch and Tournoux anatomical atlas. The Cartesian co- ordinates in Talairarch space, of detected lesion, are employed along with the associated anatomical structure(s) as the indices within the content based image retrieval system. The anatomical atlas is then also utilized to isolate distinct anatomical areas that are related to a number of neurodegenerative disorders. After segmentation of the anatomical regions of interest algorithms are applied to characterize the texture of brain intensity using Gabor filters and to elucidate the mean index ratio of activation levels. These measurements are combined to produce a single feature vector that is incorporated into the content based image retrieval system. Experimental results on images with known diagnoses show that physical lesions such as head injuries and tumours can be, to a certain extent, detected correctly. Images with correctly detected and measured lesion are then retrieved from the database of images when a query pertains to the measured locale. Images with neurodegenerative disorder patterns have been indexed and retrieved via texture-based features. Retrieval accuracy is increased, for images from patients diagnosed with dementia, by combining the texture feature and mean index ratio value

    3D CBIR with sparse coding for image-guided neurosurgery

    Get PDF
    This research takes an application-specific approach to investigate, extend and implement the state of the art in the fields of both visual information retrieval and machine learning, bridging the gap between theoretical models and real world applications. During an image-guided neurosurgery, path planning remains the foremost and hence the most important step to perform an operation and ensures the maximum resection of an intended target and minimum sacrifice of health tissues. In this investigation, the technique of content-based image retrieval (CBIR) coupled with machine learning algorithms are exploited in designing a computer aided path planning system (CAP) to assist junior doctors in planning surgical paths while sustaining the highest precision. Specifically, after evaluation of approaches of sparse coding and K-means in constructing a codebook, the model of sparse codes of 3D SIFT has been furthered and thereafter employed for retrieving, The novelty of this work lies in the fact that not only the existing algorithms for 2D images have been successfully extended into 3D space, leading to promising results, but also the application of CBIR, that is mainly in a research realm, to a clinical sector can be achieved by the integration with machine learning techniques. Comparison with the other four popular existing methods is also conducted, which demonstrates that with the implementation of sparse coding, all methods give better retrieval results than without while constituting the codebook, implying the significant contribution of machine learning techniques

    3D nonrigid medical image registration using a new information theoretic measure.

    No full text
    International audienceThis work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy

    Segmentation of striatal brain structures from high resolution pet images

    Get PDF
    Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and ComputersWe propose and evaluate fully automatic segmentation methods for the extraction of striatal brain surfaces (caudate, putamen, ventral striatum and white matter), from high resolution positron emission tomography (PET) images. In the preprocessing steps, both the right and the left striata were segmented from the high resolution PET images. This segmentation was achieved by delineating the brain surface, finding the plane that maximizes the reflective symmetry of the brain (mid-sagittal plane) and, finally, extracting the right and left striata from both hemisphere images. The delineation of the brain surface and the extraction of the striata were achieved using the DSM-OS (Surface Minimization – Outer Surface) algorithm. The segmentation of striatal brain surfaces from the striatal images can be separated into two sub-processes: the construction of a graph (named “voxel affinity matrix”) and the graph clustering. The voxel affinity matrix was built using a set of image features that accurately informs the clustering method on the relationship between image voxels. The features defining the similarity of pairwise voxels were spatial connectivity, intensity values, and Euclidean distances. The clustering process is treated as a graph partition problem using two methods, a spectral (multiway normalized cuts) and a non-spectral (weighted kernel k-means). The normalized cuts algorithm relies on the computation of the graph eigenvalues to partition the graph into connected regions. However, this method fails when applied to high resolution PET images due to the high computational requirements arising from the image size. On the other hand, the weighted kernel k-means classifies iteratively, with the aid of the image features, a given data set into a predefined number of clusters. The weighted kernel k-means and the normalized cuts algorithm are mathematically similar. After finding the optimal initial parameters for the weighted kernel k-means for this type of images, no further tuning is necessary for subsequent images. Our results showed that the putamen and ventral striatum were accurately segmented, while the caudate and white matter appeared to be merged in the same cluster. The putamen was divided in anterior and posterior areas. All the experiments resulted in the same type of segmentation, validating the reproducibility of our results

    Content based retrieval of PET neurological images

    Get PDF
    Medical image management has posed challenges to many researchers, especially when the images have to be indexed and retrieved using their visual content that is meaningful to clinicians. In this study, an image retrieval system has been developed for 3D brain PET (Position emission tomography) images. It has been found that PET neurological images can be retrieved based upon their diagnostic status using only data pertaining to their content, and predominantly the visual content. During the study PET scans are spatially normalized, using existing techniques, and their visual data is quantified. The mid-sagittal-plane of each individual 3D PET scan is found and then utilized in the detection of abnormal asymmetries, such as tumours or physical injuries. All the asymmetries detected are referenced to the Talairarch and Tournoux anatomical atlas. The Cartesian co- ordinates in Talairarch space, of detected lesion, are employed along with the associated anatomical structure(s) as the indices within the content based image retrieval system. The anatomical atlas is then also utilized to isolate distinct anatomical areas that are related to a number of neurodegenerative disorders. After segmentation of the anatomical regions of interest algorithms are applied to characterize the texture of brain intensity using Gabor filters and to elucidate the mean index ratio of activation levels. These measurements are combined to produce a single feature vector that is incorporated into the content based image retrieval system. Experimental results on images with known diagnoses show that physical lesions such as head injuries and tumours can be, to a certain extent, detected correctly. Images with correctly detected and measured lesion are then retrieved from the database of images when a query pertains to the measured locale. Images with neurodegenerative disorder patterns have been indexed and retrieved via texture-based features. Retrieval accuracy is increased, for images from patients diagnosed with dementia, by combining the texture feature and mean index ratio value.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    Cotutela con il Dipartimento di Biotecnologie e Scienze della Vita, Universiità degli Studi dell'Insubria.openThis Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient.openInformaticaPedoia, ValentinaPedoia, Valentin

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient

    Estimating Symmetry/Asymmetry in the Human Torso: A Novel Computational Method

    Get PDF
    Asymmetry in human body has largely been based on bilateral traits and/or subjective estimates, with potential usage in fields such as medicine, rehabilitation and apparel product design. In case of apparel, asymmetry in human body has been measured primarily by estimating differential linear measurement of bilateral traits. However, the characteristics of asymmetry can be better understood and be useful for clinicians and designers if it is quantified by considering the whole 3D surface. To address the prevailing issues in measuring asymmetry objectively, this research attempts to develop a novel method to quantify asymmetry that is robust, effective and non-invasive in operation. The method discussed here uses 3D scans of human torso to estimate asymmetry as a numerical index. Furthermore, using skeletal landmarks, twist and tilt measurements of the torsos are computed numerically. Together, these three measures can characterize the asymmetric/symmetric nature of a human torso. The approach taken in this research uses cross sections of torso to estimate local plane of symmetry that equi-divides a given cross section on the basis of its area, and connecting those planes to form a global surface that divides the torso volumetrically. The computational approach in estimating the area of cross section is based on the Green's theorem. The developed method was validated by both testing it on a known geometric model and by comparing the estimated index with subjective ratings by experts. This method has potential applications in various fields requiring characterizing asymmetry i.e., in case of scoliosis patients as diagnostic tool or an evaluation metric for rehabilitation efficiency, for body builders, and fashion models as an evaluation tool.Design, Housing and Merchandisin
    corecore