6,040 research outputs found

    Recurrent oligomers in proteins - an optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies

    Full text link
    A novel scheme is introduced to capture the spatial correlations of consecutive amino acids in naturally occurring proteins. This knowledge-based strategy is able to carry out optimally automated subdivisions of protein fragments into classes of similarity. The goal is to provide the minimal set of protein oligomers (termed ``oligons'' for brevity) that is able to represent any other fragment. At variance with previous studies where recurrent local motifs were classified, our concern is to provide simplified protein representations that have been optimised for use in automated folding and/or design attempts. In such contexts it is paramount to limit the number of degrees of freedom per amino acid without incurring in loss of accuracy of structural representations. The suggested method finds, by construction, the optimal compromise between these needs. Several possible oligon lengths are considered. It is shown that meaningful classifications cannot be done for lengths greater than 6 or smaller than 4. Different contexts are considered were oligons of length 5 or 6 are recommendable. With only a few dozen of oligons of such length, virtually any protein can be reproduced within typical experimental uncertainties. Structural data for the oligons is made publicly available.Comment: 19 pages, 13 postscript figure

    Highly Accurate Fragment Library for Protein Fold Recognition

    Get PDF
    Proteins play a crucial role in living organisms as they perform many vital tasks in every living cell. Knowledge of protein folding has a deep impact on understanding the heterogeneity and molecular functions of proteins. Such information leads to crucial advances in drug design and disease understanding. Fold recognition is a key step in the protein structure discovery process, especially when traditional computational methods fail to yield convincing structural homologies. In this work, we present a new protein fold recognition approach using machine learning and data mining methodologies. First, we identify a protein structural fragment library (Frag-K) composed of a set of backbone fragments ranging from 4 to 20 residues as the structural “keywords” that can effectively distinguish between major protein folds. We firstly apply randomized spectral clustering and random forest algorithms to construct representative and sensitive protein fragment libraries from a large-scale of high-quality, non-homologous protein structures available in PDB. We analyze the impacts of clustering cut-offs on the performance of the fragment libraries. Then, the Frag-K fragments are employed as structural features to classify protein structures in major protein folds defined by SCOP (Structural Classification of Proteins). Our results show that a structural dictionary with ~400 4- to 20-residue Frag-K fragments is capable of classifying major SCOP folds with high accuracy. Then, based on Frag-k, we design a novel deep learning architecture, so-called DeepFrag-k, which identifies fold discriminative features to improve the accuracy of protein fold recognition. DeepFrag-k is composed of two stages: the first stage employs a multimodal Deep Belief Network (DBN) to predict the potential structural fragments given a sequence, represented as a fragment vector, and then the second stage uses a deep convolution neural network (CNN) to classify the fragment vectors into the corresponding folds. Our results show that DeepFrag-k yields 92.98% accuracy in predicting the top-100 most popular fragments, which can be used to generate discriminative fragment feature vectors to improve protein fold recognition

    Protein Local Tertiary Structure Prediction by Super Granule Support Vector Machines with Chou-Fasman Parameter

    Get PDF
    Prediction of a protein's tertiary structure from its sequence information alone is considered a major task in modern computational biology.  In order to closer the gap between protein sequences to its tertiary structures, we discuss the correlation between protein sequence and local tertiary structure information in this paper.  The strategy we used in this work is predict small portions (local) of protein tertiary structure with high confidence from conserved protein sequences, which are called “protein sequence motifs”. 799 protein sequence motifs that transcend protein family boundaries were obtained from our previous work.  The prediction accuracy generated from the best group of protein sequence motifs always keep higher than 90% while more than 8% of the independent testing data segments are predicted. Since the most meaningful result published in latest publication is merely 70.02% accuracy under the coverage of 4.45%, the research results achieved in this paper are obviously outperformed. Besides, we also set up a stricter evaluation to our prediction to further understand the relation between protein sequence motifs and tertiary structure predictions.  The results suggest that the hidden sequence-to-structure relationship can be uncovered using the Super Granule SVM Model with the Chou-Fasman Parameter.  With the high local tertiary structure prediction accuracy provided in this article, the hidden relation between protein primary sequences and their 3D structure are uncovered considerably

    Discovery and Extraction of Protein Sequence Motif Information that Transcends Protein Family Boundaries

    Get PDF
    Protein sequence motifs are gathering more and more attention in the field of sequence analysis. The recurring patterns have the potential to determine the conformation, function and activities of the proteins. In our work, we obtained protein sequence motifs which are universally conserved across protein family boundaries. Therefore, unlike most popular motif discovering algorithms, our input dataset is extremely large. As a result, an efficient technique is essential. We use two granular computing models, Fuzzy Improved K-means (FIK) and Fuzzy Greedy K-means (FGK), in order to efficiently generate protein motif information. After that, we develop an efficient Super Granular SVM Feature Elimination model to further extract the motif information. During the motifs searching process, setting up a fixed window size in advance may simplify the computational complexity and increase the efficiency. However, due to the fixed size, our model may deliver a number of similar motifs simply shifted by some bases or including mismatches. We develop a new strategy named Positional Association Super-Rule to confront the problem of motifs generated from a fixed window size. It is a combination approach of the super-rule analysis and a novel Positional Association Rule algorithm. We use the super-rule concept to construct a Super-Rule-Tree (SRT) by a modified HHK clustering, which requires no parameter setup to identify the similarities and dissimilarities between the motifs. The positional association rule is created and applied to search similar motifs that are shifted some residues. By analyzing the motifs results generated by our approaches, we realize that these motifs are not only significant in sequence area, but also in secondary structure similarity and biochemical properties

    SOMEA: self-organizing map based extraction algorithm for DNA motif identification with heterogeneous model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discrimination of transcription factor binding sites (TFBS) from background sequences plays a key role in computational motif discovery. Current clustering based algorithms employ homogeneous model for problem solving, which assumes that motifs and background signals can be equivalently characterized. This assumption has some limitations because both sequence signals have distinct properties.</p> <p>Results</p> <p>This paper aims to develop a Self-Organizing Map (SOM) based clustering algorithm for extracting binding sites in DNA sequences. Our framework is based on a novel intra-node soft competitive procedure to achieve maximum discrimination of motifs from background signals in datasets. The intra-node competition is based on an adaptive weighting technique on two different signal models to better represent these two classes of signals. Using several real and artificial datasets, we compared our proposed method with several motif discovery tools. Compared to SOMBRERO, a state-of-the-art SOM based motif discovery tool, it is found that our algorithm can achieve significant improvements in the average precision rates (i.e., about 27%) on the real datasets without compromising its sensitivity. Our method also performed favourably comparing against other motif discovery tools.</p> <p>Conclusions</p> <p>Motif discovery with model based clustering framework should consider the use of heterogeneous model to represent the two classes of signals in DNA sequences. Such heterogeneous model can achieve better signal discrimination compared to the homogeneous model.</p

    The potential of text mining in data integration and network biology for plant research : a case study on Arabidopsis

    Get PDF
    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies

    Alignment, Clustering and Extraction of Structured Motifs in DNA Promoter Sequences

    Get PDF
    A simple motif is a short DNA sequence found in the promoter region and believed to act as a binding site for a transcription factor protein. A structured motif is a sequence of simple motifs (boxes) separated by short sequences (gaps). Biologists theorize that the presence of these motifs play a key role in gene expression regulation. Discovering these patterns is an important step towards understanding protein-gene and gene-gene interaction thus facilitates the building of accurate gene regulatory network models. DNA sequence motif extraction is an important problem in bioinformatics. Many studies have proposed algorithms to solve the problem instance of simple motif extraction. Only in the past decade has the more complex structured motif extraction problem been examined by researchers. The problem is inherently challenging as structured motif patterns are segmented into several boxes separated by variable size gaps for each instance. These boxes may not be exact copies, but may have multiple mismatched positions. The challenge is extenuated by the lack of resources for real datasets covering a wide range of possible cases. Also, incomplete annotation of real data leads to the discovery of unknown motifs that may be regarded as false positives. Furthermore, current algorithms demand unreasonable amount of prior knowledge to successfully extract the target pattern. The contributions of this research are four new algorithms. First, SMGenerate generates simulated datasets of implanted motifs that covers a wide range of biologically possible cases. Second, SMAlign aligns a pair of structured motifs optimally and efficiently given their gap constraints. Third, SMCluster produces multiple alignment of structured motifs through hierarchical clustering using SMAlign\u27s affinity score. Finally, SMExtract extracts structured motifs from a set of sequences by using SMCluster to construct the target pattern from the top reported two-box patterns (fragments), extracted using an existing algorithm (Exmotif) and a two-box template. The main advantage of SMExtract is its efficiency to extract longer degenerate patterns while requiring less prior knowledge, about the pattern to be extracted, than current algorithms
    • 

    corecore