49 research outputs found

    Mixed Structural Models for 3D Audio in Virtual Environments

    Get PDF
    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of the new technology by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but a few. The concurrent presence of multimodal senses and activities make multimodal virtual environments potentially flexible and adaptive, allowing users to switch between modalities as needed during the continuously changing conditions of use situation. Augmentation through additional modalities and sensory substitution techniques are compelling ingredients for presenting information non-visually, when the visual bandwidth is overloaded, when data are visually occluded, or when the visual channel is not available to the user (e.g., for visually impaired people). Multimodal systems for the representation of spatial information will largely benefit from the implementation of audio engines that have extensive knowledge of spatial hearing and virtual acoustics. Models for spatial audio can provide accurate dynamic information about the relation between the sound source and the surrounding environment, including the listener and his/her body which acts as an additional filter. Indeed, this information cannot be substituted by any other modality (i.e., visual or tactile). Nevertheless, today's spatial representation of audio within sonification tends to be simplistic and with poor interaction capabilities, being multimedia systems currently focused on graphics processing mostly, and integrated with simple stereo or multi-channel surround-sound. On a much different level lie binaural rendering approaches based on headphone reproduction, taking into account that possible disadvantages (e.g. invasiveness, non-flat frequency responses) are counterbalanced by a number of desirable features. Indeed, these systems might control and/or eliminate reverberation and other acoustic effects of the real listening space, reduce background noise, and provide adaptable and portable audio displays, which are all relevant aspects especially in enhanced contexts. Most of the binaural sound rendering techniques currently exploited in research rely on the use of Head-Related Transfer Functions (HRTFs), i.e. peculiar filters that capture the acoustic effects of the human head and ears. HRTFs allow loyal simulation of the audio signal that arrives at the entrance of the ear canal as a function of the sound source's spatial position. HRTF filters are usually presented under the form of acoustic signals acquired on dummy heads built according to mean anthropometric measurements. Nevertheless, anthropometric features of the human body have a key role in HRTF shaping: several studies have attested how listening to non-individual binaural sounds results in evident localization errors. On the other hand, individual HRTF measurements on a significant number of subjects result both time- and resource-expensive. Several techniques for synthetic HRTF design have been proposed during the last two decades and the most promising one relies on structural HRTF models. In this revolutionary approach, the most important effects involved in spatial sound perception (acoustic delays and shadowing due to head diffraction, reflections on pinna contours and shoulders, resonances inside the ear cavities) are isolated and modeled separately with a corresponding filtering element. HRTF selection and modeling procedures can be determined by physical interpretation: parameters of each rendering blocks or selection criteria can be estimated from real and simulated data and related to anthropometric geometries. Effective personal auditory displays represent an innovative breakthrough for a plethora of applications and structural approach can also allow for effective scalability depending on the available computational resources or bandwidth. Scenes with multiple highly realistic audiovisual objects are easily managed exploiting parallelism of increasingly ubiquitous GPUs (Graphics Processing Units). Building individual headphone equalization with perceptually robust inverse filtering techniques represents a fundamental step towards the creation of personal virtual auditory displays (VADs). To this regard, several examples might benefit from these considerations: multi-channel downmix over headphones, personal cinema, spatial audio rendering in mobile devices, computer-game engines and individual binaural audio standards for movie and music production. This thesis presents a family of approaches that overcome the current limitations of headphone-based 3D audio systems, aiming at building personal auditory displays through structural binaural audio models for an immersive sound reproduction. The resulting models allow for an interesting form of content adaptation and personalization, since they include parameters related to the user's anthropometry in addition to those related to the sound sources and the environment. The covered research directions converge to a novel framework for synthetic HRTF design and customization that combines the structural modeling paradigm with other HRTF selection techniques (inspired by non-individualized HRTF selection procedures) and represents the main novel contribution of this thesis: the Mixed Structural Modeling (MSM) approach considers the global HRTF as a combination of structural components, which can be chosen to be either synthetic or recorded components. In both cases, customization is based on individual anthropometric data, which are used to either fit the model parameters or to select a measured/simulated component within a set of available responses. The definition and experimental validation of the MSM approach addresses several pivotal issues towards the acquisition and delivery of binaural sound scenes and designing guidelines for personalized 3D audio virtual environments holding the potential of novel forms of customized communication and interaction with sound and music content. The thesis also presents a multimodal interactive system which is used to conduct subjective test on multi-sensory integration in virtual environments. Four experimental scenarios are proposed in order to test the capabilities of auditory feedback jointly to tactile or visual modalities. 3D audio feedback related to user’s movements during simple target following tasks is tested as an applicative example of audio-visual rehabilitation system. Perception of direction of footstep sounds interactively generated during walking and provided through headphones highlights how spatial information can clarify the semantic congruence between movement and multimodal feedback. A real time, physically informed audio-tactile interactive system encodes spatial information in the context of virtual map presentation with particular attention to orientation and mobility (O&M) learning processes addressed to visually impaired people. Finally, an experiment analyzes the haptic estimation of size of a virtual 3D object (a stair-step) whereas the exploration is accompanied by a real-time generated auditory feedback whose parameters vary as a function of the height of the interaction point. The collected data from these experiments suggest that well-designed multimodal feedback, exploiting 3D audio models, can definitely be used to improve performance in virtual reality and learning processes in orientation and complex motor tasks, thanks to the high level of attention, engagement, and presence provided to the user. The research framework, based on the MSM approach, serves as an important evaluation tool with the aim of progressively determining the relevant spatial attributes of sound for each application domain. In this perspective, such studies represent a novelty in the current literature on virtual and augmented reality, especially concerning the use of sonification techniques in several aspects of spatial cognition and internal multisensory representation of the body. This thesis is organized as follows. An overview of spatial hearing and binaural technology through headphones is given in Chapter 1. Chapter 2 is devoted to the Mixed Structural Modeling formalism and philosophy. In Chapter 3, topics in structural modeling for each body component are studied, previous research and two new models, i.e. near-field distance dependency and external-ear spectral cue, are presented. Chapter 4 deals with a complete case study of the mixed structural modeling approach and provides insights about the main innovative aspects of such modus operandi. Chapter 5 gives an overview of number of a number of proposed tools for the analysis and synthesis of HRTFs. System architectural guidelines and constraints are discussed in terms of real-time issues, mobility requirements and customized audio delivery. In Chapter 6, two case studies investigate the behavioral importance of spatial attribute of sound and how continuous interaction with virtual environments can benefit from using spatial audio algorithms. Chapter 7 describes a set of experiments aimed at assessing the contribution of binaural audio through headphones in learning processes of spatial cognitive maps and exploration of virtual objects. Finally, conclusions are drawn and new research horizons for further work are exposed in Chapter 8

    A virtual reality environment with personalized spatial audio rendering

    Get PDF
    A Virtual Reality localization test with personalized HRTF sets for better audio listening performances. Evaluation of 15 subjects performances in a silent booth were done, using a Samsung Gear VR and S7 headset for 3D video renderin

    Aprendizado de variedades para a síntese de áudio espacial

    Get PDF
    Orientadores: Luiz César Martini, Bruno Sanches MasieroTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O objetivo do áudio espacial gerado com a técnica binaural é simular uma fonte sonora em localizações espaciais arbitrarias através das Funções de Transferência Relativas à Cabeça (HRTFs) ou também chamadas de Funções de Transferência Anatômicas. As HRTFs modelam a interação entre uma fonte sonora e a antropometria de uma pessoa (e.g., cabeça, torso e orelhas). Se filtrarmos uma fonte de áudio através de um par de HRTFs (uma para cada orelha), o som virtual resultante parece originar-se de uma localização espacial específica. Inspirados em nossos resultados bem sucedidos construindo uma aplicação prática de reconhecimento facial voltada para pessoas com deficiência visual que usa uma interface de usuário baseada em áudio espacial, neste trabalho aprofundamos nossa pesquisa para abordar vários aspectos científicos do áudio espacial. Neste contexto, esta tese analisa como incorporar conhecimentos prévios do áudio espacial usando uma nova representação não-linear das HRTFs baseada no aprendizado de variedades para enfrentar vários desafios de amplo interesse na comunidade do áudio espacial, como a personalização de HRTFs, a interpolação de HRTFs e a melhoria da localização de fontes sonoras. O uso do aprendizado de variedades para áudio espacial baseia-se no pressuposto de que os dados (i.e., as HRTFs) situam-se em uma variedade de baixa dimensão. Esta suposição também tem sido de grande interesse entre pesquisadores em neurociência computacional, que argumentam que as variedades são cruciais para entender as relações não lineares subjacentes à percepção no cérebro. Para todas as nossas contribuições usando o aprendizado de variedades, a construção de uma única variedade entre os sujeitos através de um grafo Inter-sujeito (Inter-subject graph, ISG) revelou-se como uma poderosa representação das HRTFs capaz de incorporar conhecimento prévio destas e capturar seus fatores subjacentes. Além disso, a vantagem de construir uma única variedade usando o nosso ISG e o uso de informações de outros indivíduos para melhorar o desempenho geral das técnicas aqui propostas. Os resultados mostram que nossas técnicas baseadas no ISG superam outros métodos lineares e não-lineares nos desafios de áudio espacial abordados por esta teseAbstract: The objective of binaurally rendered spatial audio is to simulate a sound source in arbitrary spatial locations through the Head-Related Transfer Functions (HRTFs). HRTFs model the direction-dependent influence of ears, head, and torso on the incident sound field. When an audio source is filtered through a pair of HRTFs (one for each ear), a listener is capable of perceiving a sound as though it were reproduced at a specific location in space. Inspired by our successful results building a practical face recognition application aimed at visually impaired people that uses a spatial audio user interface, in this work we have deepened our research to address several scientific aspects of spatial audio. In this context, this thesis explores the incorporation of spatial audio prior knowledge using a novel nonlinear HRTF representation based on manifold learning, which tackles three major challenges of broad interest among the spatial audio community: HRTF personalization, HRTF interpolation, and human sound localization improvement. Exploring manifold learning for spatial audio is based on the assumption that the data (i.e. the HRTFs) lies on a low-dimensional manifold. This assumption has also been of interest among researchers in computational neuroscience, who argue that manifolds are crucial for understanding the underlying nonlinear relationships of perception in the brain. For all of our contributions using manifold learning, the construction of a single manifold across subjects through an Inter-subject Graph (ISG) has proven to lead to a powerful HRTF representation capable of incorporating prior knowledge of HRTFs and capturing the underlying factors of spatial hearing. Moreover, the use of our ISG to construct a single manifold offers the advantage of employing information from other individuals to improve the overall performance of the techniques herein proposed. The results show that our ISG-based techniques outperform other linear and nonlinear methods in tackling the spatial audio challenges addressed by this thesisDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/14630-9FAPESPCAPE

    Improving the Audio Game-Playing Performances of People with Visual Impairments Through Multimodal Training

    Get PDF
    As the number of people with visual impairments (that is, those who are blind or have low vision) is continuously increasing, rehabilitation and engineering researchers have identified the need to design sensorysubstitution devices that would offer assistance and guidance to these people for performing navigational tasks. Auditory and haptic cues have been shown to be an effective approach towards creating a rich spatial representation of the environment, so they are considered for inclusion in the development of assistive tools that would enable people with visual impairments to acquire knowledge of the surrounding space in a way close to the visually based perception of sighted individuals. However, achieving efficiency through a sensory substitution device requires extensive training for visually impaired users to learn how to process the artificial auditory cues and convert them into spatial information. Methods: Considering all the potential advantages gamebased learning can provide, we propose a new method for training sound localization and virtual navigational skills of visually impaired people in a 3D audio game with hierarchical levels of difficulty. The training procedure is focused on a multimodal (auditory and haptic) learning approach in which the subjects have been asked to listen to 3D sounds while simultaneously perceiving a series of vibrations on a haptic headband that corresponds to the direction of the sound source in space. Results: The results we obtained in a sound-localization experiment with 10 visually impaired people showed that the proposed training strategy resulted in significant improvements in auditory performance and navigation skills of the subjects, thus ensuring behavioral gains in the spatial perception of the environment.Sound of Vision, Horizon 2020 nr. 643636Peer Reviewe

    Evaluating the Perceived Quality of Binaural Technology

    Get PDF
    This thesis studies binaural sound reproduction from both a technical and a perceptual perspective, with the aim of improving the headphone listening experience for entertainment media audiences. A detailed review is presented of the relevant binaural technology and of the concepts and methods for evaluating perceived quality. A pilot study assesses the application of state-of-the-art binaural rendering systems to existing broadcast programmes, finding no substantial improvements in quality over conventional stereo signals. A second study gives evidence that realistic binaural simulation can be achieved without personalised acoustic calibration, showing promise for the application of binaural technology. Flexible technical apparatus is presented to allow further investigation of rendering techniques and content production processes. Two web-based studies show that appropriate combination of techniques can lead to improved experience for typical audience members, compared to stereo signals, even without personalised rendering or listener head-tracking. Recent developments in spatial audio applications are then discussed. These have made dynamic client-side binaural rendering with listener head-tracking feasible for mass audiences, but also present technical constraints. To limit distribution bandwidth and computational complexity during rendering, loudspeaker virtualisation is widely used. The effects on perceived quality of these techniques are studied in depth for the first time. A descriptive analysis experiment demonstrates that loudspeaker virtualisation during binaural rendering causes degradations to a range of perceptual characteristics and that these vary across other system conditions. A final experiment makes novel use of the check-all-that-apply method to efficiently characterise the quality of seven spatial audio representations and associated dynamic binaural rendering techniques, using single sound sources and complex dramatic scenes. The perceived quality of these different representations varies significantly across a wide range of characteristics and with programme material. These methods and findings can be used to improve the quality of current binaural technology applications

    The creation of a binaural spatialization tool

    Get PDF
    The main focus of the research presented within this thesis is, as the title suggests, binaural spatialization. Binaural technology and, especially, the binaural recording technique are not particu-larly recent. Nevertheless, the interest in this technology has lately become substantial due to the increase in the calculation power of personal computers, which started to allow the complete and accurate real-time simulation of three-dimensional sound-fields over headphones. The goals of this body of research have been determined in order to provide elements of novelty and of contribution to the state of the art in the field of binaural spatialization. A brief summary of these is found in the following list: • The development and implementation of a binaural spatialization technique with Distance Simulation, based on the individual simulation of the distance cues and Binaural Reverb, in turn based on the weighted mix between the signals convolved with the different HRIR and BRIR sets; • The development and implementation of a characterization process for modifying a BRIR set in order to simulate different environments with different characteristics in terms of frequency response and reverb time; • The creation of a real-time and offline binaural spatialization application, imple-menting the techniques cited in the previous points, and including a set of multichannel(and Ambisonics)-to-binaural conversion tools. • The performance of a perceptual evaluation stage to verify the effectiveness, realism, and quality of the techniques developed, and • The application and use of the developed tools within both scientific and artistic “case studies”. In the following chapters, sections, and subsections, the research performed between January 2006 and March 2010 will be described, outlining the different stages before, during, and after the development of the software platform, analysing the results of the perceptual evaluations and drawing conclusions that could, in the future, be considered the starting point for new and innovative research projects

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    corecore