164 research outputs found

    MECA: Mathematical Expression Based Post Publication Content Analysis

    Get PDF
    Mathematical expressions (ME) are critical abstractions for technical publications. While the sheer volume of technical publications grows in time, few ME centric applications have been developed due to the steep gap between the typesetting data in post-publication digital documents and the high-level technical semantics. With the acceleration of the technical publications every year, word-based information analysis technologies are inadequate to enable users in discovery, organizing, and interrelating technical work efficiently and effectively. This dissertation presents a modeling framework and the associated algorithms, called the mathematical-centered post-publication content analysis (MECA) system to address several critical issues to build a layered solution architecture for recovery of high-level technical information. Overall, MECA is consisted of four layers of modeling work, starting from the extraction of MEs from Portable Document Format (PDF) files. Specifically, a weakly-supervised sequential typesetting Bayesian model is developed by using a concise font-value based feature space for Bayesian inference of ME vs. words for the rendering units separated by space. A Markov Random Field (MRF) model is designed to merge and correct the MEs identified from the rendering units, which are otherwise prone to fragmentation of large MEs. At the next layer, MECA aims at the recovery of ME semantics. The first step is the ME layout analysis to disambiguate layout structures based on a Content-Constrained Spatial (CCS) global inference model to overcome local errors. It achieves high accuracy at low computing cost by a parametric lognormal model for the feature distribution of typographic systems. The ME layout is parsed into ME semantics with a three-phase processing workflow to overcome a variety of semantic ambiguities. In the first phase, the ME layout is linearized into a token sequence, upon which the abstract syntax tree (AST) is constructed in the second phase using probabilistic context-free grammar. Tree rewriting will transform the AST into ME objects in the third phase. Built upon the two layers of ME extraction and semantics modeling work, next we explore one of the bonding relationships between words and MEs: ME declarations, where the words and MEs are respectively the qualitative and quantitative (QuQn) descriptors of technical concepts. Conventional low-level PoS tagging and parsing tools have poor performance in the processing of this type of mixed word-ME (MWM) sentences. As such, we develop an MWM processing toolkit. A semi-automated weakly-supervised framework is employed for mining of declaration templates from a large amount of unlabeled data so that the templates can be used for the detection of ME declarations. On the basis of the three low-level content extraction and prediction solutions, the MECA system can extract MEs, interpret their mathematical semantics, and identify their bonding declaration words. By analyzing the dependency among these elements in a paper, we can construct a QuQn map, which essentially represents the reasoning flow of a paper. Three case studies are conducted for QuQn map applications: differential content comparison of papers, publication trend generation, and interactive mathematical learning. Outcomes from these studies suggest that MECA is a highly practical content analysis technology based on a theoretically sound framework. Much more can be expanded and improved upon for the next generation of deep content analysis solutions

    Automated scholarly paper review: Technologies and challenges

    Full text link
    Peer review is a widely accepted mechanism for research evaluation, playing a pivotal role in scholarly publishing. However, criticisms have long been leveled on this mechanism, mostly because of its inefficiency and subjectivity. Recent years have seen the application of artificial intelligence (AI) in assisting the peer review process. Nonetheless, with the involvement of humans, such limitations remain inevitable. In this review paper, we propose the concept and pipeline of automated scholarly paper review (ASPR) and review the relevant literature and technologies of achieving a full-scale computerized review process. On the basis of the review and discussion, we conclude that there is already corresponding research and implementation at each stage of ASPR. We further look into the challenges in ASPR with the existing technologies. The major difficulties lie in imperfect document parsing and representation, inadequate data, defective human-computer interaction and flawed deep logical reasoning. Moreover, we discuss the possible moral & ethical issues and point out the future directions of ASPR. In the foreseeable future, ASPR and peer review will coexist in a reinforcing manner before ASPR is able to fully undertake the reviewing workload from humans

    Investigating human-perceptual properties of "shapes" using 3D shapes and 2D fonts

    Get PDF
    Shapes are generally used to convey meaning. They are used in video games, films and other multimedia, in diverse ways. 3D shapes may be destined for virtual scenes or represent objects to be constructed in the real-world. Fonts add character to an otherwise plain block of text, allowing the writer to make important points more visually prominent or distinct from other text. They can indicate the structure of a document, at a glance. Rather than studying shapes through traditional geometric shape descriptors, we provide alternative methods to describe and analyse shapes, from a lens of human perception. This is done via the concepts of Schelling Points and Image Specificity. Schelling Points are choices people make when they aim to match with what they expect others to choose but cannot communicate with others to determine an answer. We study whole mesh selections in this setting, where Schelling Meshes are the most frequently selected shapes. The key idea behind image Specificity is that different images evoke different descriptions; but ‘Specific’ images yield more consistent descriptions than others. We apply Specificity to 2D fonts. We show that each concept can be learned and predict them for fonts and 3D shapes, respectively, using a depth image-based convolutional neural network. Results are shown for a range of fonts and 3D shapes and we demonstrate that font Specificity and the Schelling meshes concept are useful for visualisation, clustering, and search applications. Overall, we find that each concept represents similarities between their respective type of shape, even when there are discontinuities between the shape geometries themselves. The ‘context’ of these similarities is in some kind of abstract or subjective meaning which is consistent among different people

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∌ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Table recognition in mathematical documents

    Get PDF
    While a number of techniques have been developed for table recognition in ordinary text documents, when dealing with tables in mathematical documents these techniques are often ineffective as tables containing mathematical structures can differ quite significantly from ordinary text tables. In fact, it is even difficult to clearly distinguish table recognition in mathematics from layout analysis of mathematical formulas. Again, it is not straight forward to adapt general layout analysis techniques for mathematical formulas. However, a reliable understanding of formula layout is often a necessary prerequisite to further semantic interpretation of the represented formulae. In this thesis, we present the necessary preprocessing steps towards a table recognition technique that specialises on tables in mathematical documents. It is based on our novel robust line recognition technique for mathematical expressions, which is fully independent of understanding the content or specialist fonts of expressions. We also present a graph representation for complex mathematical table structures. A set of rewriting rules applied to the graph allows for reliable re-composition of cells in order to identify several valid table interpretations. We demonstrate the effectiveness of our technique by applying them to a set of mathematical tables from standard text book that has been manually ground-truthed
    • 

    corecore