26,614 research outputs found

    Textpresso for Neuroscience: Searching the Full Text of Thousands of Neuroscience Research Papers

    Get PDF
    Textpresso is a text-mining system for scientific literature. Its two major features are access to the full text of research papers and the development and use of categories of biological concepts as well as categories that describe or relate objects. A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. Here we describe Textpresso for Neuroscience, part of the core Neuroscience Information Framework (NIF). The Textpresso site currently consists of 67,500 full text papers and 131,300 abstracts. We show that using categories in literature can make a pure keyword query more refined and meaningful. We also show how semantic queries can be formulated with categories only. We explain the build and content of the database and describe the main features of the web pages and the advanced search options. We also give detailed illustrations of the web service developed to provide programmatic access to Textpresso. This web service is used by the NIF interface to access Textpresso. The standalone website of Textpresso for Neuroscience can be accessed at http://www.textpresso.org/neuroscience

    Literature-based discovery of diabetes- and ROS-related targets

    Get PDF
    Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe

    Genes2Networks: Connecting Lists of Proteins by Using Background Literature-based Mammalian Networks

    Get PDF
    In recent years, in-silico literature-based mammalian protein-protein interaction network datasets have been developed. These datasets contain binary interactions extracted manually from legacy experimental biomedical research literature. Placing lists of genes or proteins identified as significantly changing in multivariate experiments, in the context of background knowledge about binary interactions, can be used to place these genes or proteins in the context of pathways and protein complexes.
Genes2Networks is a software system that integrates the content of ten mammalian literature-based interaction network datasets. Filtering to prune low-confidence interactions was implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from “seed” lists of human Entrez gene names. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is available at http://actin.pharm.mssm.edu/genes2networks.
Genes2Network is a powerful web-based software application tool that can help experimental biologists to interpret high-throughput experimental results used in genomics and proteomics studies where the output of these experiments is a list of significantly changing genes or proteins. The system can be used to find relationships between nodes from the seed list, and predict novel nodes that play a key role in a common function

    ChemTextMiner: An open source tool kit for mining medical literature abstracts

    Get PDF
    Text mining involves recognizing patterns from a wealth of information hidden latent in unstructured text and deducing explicit relationships among data entities by using data mining tools. Text mining of Biomedical literature is essential for building biological network connecting genes, proteins, drugs, therapeutic categories, side effects etc. related to diseases of interest. We present an approach for textmining biomedical literature mostly in terms of not so obvious hidden relationships and build biological network applied for the textmining of important human diseases like MTB, Malaria, Alzheimer and Diabetes. The methods, tools and data used for building biological networks using a distributed computing environment previously used for ChemXtreme[1] and ChemStar[2] applications are also described

    Graphene-based nanomaterials for tissue engineering in the dental field

    Get PDF
    The world of dentistry is approaching graphene-based nanomaterials as substitutes for tissue engineering. Apart from its exceptional mechanical strength, electrical conductivity and thermal stability, graphene and its derivatives can be functionalized with several bioactive molecules. They can also be incorporated into different scaffolds used in regenerative dentistry, generating nanocomposites with improved characteristics. This review presents the state of the art of graphene-based nanomaterial applications in the dental field. We first discuss the interactions between cells and graphene, summarizing the available in vitro and in vivo studies concerning graphene biocompatibility and cytotoxicity. We then highlight the role of graphene-based nanomaterials in stem cell control, in terms of adhesion, proliferation and differentiation. Particular attention will be given to stem cells of dental origin, such as those isolated from dental pulp, periodontal ligament or dental follicle. The review then discusses the interactions between graphene-based nanomaterials with cells of the immune system; we also focus on the antibacterial activity of graphene nanomaterials. In the last section, we offer our perspectives on the various opportunities facing the use of graphene and its derivatives in associations with titanium dental implants, membranes for bone regeneration, resins, cements and adhesives as well as for tooth-whitening procedure
    • …
    corecore