91,031 research outputs found

    Non-principal ultrafilters, program extraction and higher order reverse mathematics

    Full text link
    We investigate the strength of the existence of a non-principal ultrafilter over fragments of higher order arithmetic. Let U be the statement that a non-principal ultrafilter exists and let ACA_0^{\omega} be the higher order extension of ACA_0. We show that ACA_0^{\omega}+U is \Pi^1_2-conservative over ACA_0^{\omega} and thus that ACA_0^{\omega}+\U is conservative over PA. Moreover, we provide a program extraction method and show that from a proof of a strictly \Pi^1_2 statement \forall f \exists g A(f,g) in ACA_0^{\omega}+U a realizing term in G\"odel's system T can be extracted. This means that one can extract a term t, such that A(f,t(f))

    The computational content of Nonstandard Analysis

    Get PDF
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very large scope. In particular, we will observe that this scope includes any theorem of pure Nonstandard Analysis, where `pure' means that only nonstandard definitions (and not the epsilon-delta kind) are used. In this note, we survey results in analysis, computability theory, and Reverse Mathematics.Comment: In Proceedings CL&C 2016, arXiv:1606.0582

    Extending the Calculus of Constructions with Tarski's fix-point theorem

    Get PDF
    We propose to use Tarski's least fixpoint theorem as a basis to define recursive functions in the calculus of inductive constructions. This widens the class of functions that can be modeled in type-theory based theorem proving tool to potentially non-terminating functions. This is only possible if we extend the logical framework by adding the axioms that correspond to classical logic. We claim that the extended framework makes it possible to reason about terminating and non-terminating computations and we show that common facilities of the calculus of inductive construction, like program extraction can be extended to also handle the new functions

    Applying G\"odel's Dialectica Interpretation to Obtain a Constructive Proof of Higman's Lemma

    Full text link
    We use G\"odel's Dialectica interpretation to analyse Nash-Williams' elegant but non-constructive "minimal bad sequence" proof of Higman's Lemma. The result is a concise constructive proof of the lemma (for arbitrary decidable well-quasi-orders) in which Nash-Williams' combinatorial idea is clearly present, along with an explicit program for finding an embedded pair in sequences of words.Comment: In Proceedings CL&C 2012, arXiv:1210.289

    On choice rules in dependent type theory

    Get PDF
    In a dependent type theory satisfying the propositions as types correspondence together with the proofs-as-programs paradigm, the validity of the unique choice rule or even more of the choice rule says that the extraction of a computable witness from an existential statement under hypothesis can be performed within the same theory. Here we show that the unique choice rule, and hence the choice rule, are not valid both in Coquand\u2019s Calculus of Constructions with indexed sum types, list types and binary disjoint sums and in its predicative version implemented in the intensional level of the Minimalist Founda- tion. This means that in these theories the extraction of computational witnesses from existential statements must be performed in a more ex- pressive proofs-as-programs theory

    Dialectica Interpretation with Marked Counterexamples

    Full text link
    Goedel's functional "Dialectica" interpretation can be used to extract functional programs from non-constructive proofs in arithmetic by employing two sorts of higher-order witnessing terms: positive realisers and negative counterexamples. In the original interpretation decidability of atoms is required to compute the correct counterexample from a set of candidates. When combined with recursion, this choice needs to be made for every step in the extracted program, however, in some special cases the decision on negative witnesses can be calculated only once. We present a variant of the interpretation in which the time complexity of extracted programs can be improved by marking the chosen witness and thus avoiding recomputation. The achieved effect is similar to using an abortive control operator to interpret computational content of non-constructive principles.Comment: In Proceedings CL&C 2010, arXiv:1101.520
    • …
    corecore