5,256 research outputs found

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    A Vision-based Real-time Conductor Gesture Tracking System

    Get PDF
    [[abstract]]In recent years, interaction between humans and computers is becoming more important. “Virtual Orchestra” is an Human Computer Interface (HCI) software which attempts to authentically reproduce a live orchestra using synthesized and sampled instruments sounds. Compared with the traditional HCIs, using vision-based gesture can provide a touch-free interface which is less bounding than mechanical instruments. In this research, we design a vision-based system that can track the hand motions of a conductor from webcam and extract musical beats from motions. The algorithm used is based on a robust nonparametric technique for climbing density gradients to find the mode of probability distributions. For each frame, the mean shift algorithm converges to the mode of the distribution. Then, the CAMSHIFT algorithm is used to track the moving objects in a video scene. After acquiring the target center point continuously, we can form the trajectory of moving target (such as baton, conductor’s hand
etc). By computing an approximation of k-curvature for the trajectory, and the angle between these two motion vectors, we can compute the point of the change of direction. In this thesis, a system was developed for interpreting a conductor’s gestures and translating theses gestures into musical beats that can be explained as the major part of the music. This system does not require the use of active sensing, special baton, or other constraints on the physical motion of the conductor.

    STUDY OF HAND GESTURE RECOGNITION AND CLASSIFICATION

    Get PDF
    To recognize different hand gestures and achieve efficient classification to understand static and dynamic hand movements used for communications.Static and dynamic hand movements are first captured using gesture recognition devices including Kinect device, hand movement sensors, connecting electrodes, and accelerometers. These gestures are processed using hand gesture recognition algorithms such as multivariate fuzzy decision tree, hidden Markov models (HMM), dynamic time warping framework, latent regression forest, support vector machine, and surface electromyogram. Hand movements made by both single and double hands are captured by gesture capture devices with proper illumination conditions. These captured gestures are processed for occlusions and fingers close interactions for identification of right gesture and to classify the gesture and ignore the intermittent gestures. Real-time hand gestures recognition needs robust algorithms like HMM to detect only the intended gesture. Classified gestures are then compared for the effectiveness with training and tested standard datasets like sign language alphabets and KTH datasets. Hand gesture recognition plays a very important role in some of the applications such as sign language recognition, robotics, television control, rehabilitation, and music orchestration

    Towards the Design of a Natural User Interface for Performing and Learning Musical Gestures

    Get PDF
    AbstractA large variety of musical instruments, either acoustical or digital, are based on a keyboard scheme. Keyboard instruments can produce sounds through acoustic means but they are increasingly used to control digital sound synthesis processes with nowadays music. Interestingly, with all the different possibilities of sonic outcomes, the input remains a musical gesture. In this paper we present the conceptualization of a Natural User Interface (NUI), named the Intangible Musical Instrument (IMI), aiming to support both learning of expert musical gestures and performing music as a unified user experience. The IMI is designed to recognize metaphors of pianistic gestures, focusing on subtle uses of fingers and upper-body. Based on a typology of musical gestures, a gesture vocabulary has been created, hierarchized from basic to complex. These piano-like gestures are finally recognized and transformed into sounds

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by Leveraging Lightweight All-ConvNet and Transfer Learning

    Full text link
    Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces. However, the data variability between inter-session and inter-subject scenarios presents a great challenge. The existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability. Hence, these methods also require learning over millions of training parameters and a large pre-trained and target domain dataset in both the pre-training and adaptation stages. As a result, it makes high-end resource-bounded and computationally very expensive for deployment in real-time applications. To overcome this problem, we propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition performance. The All-ConvNet+TL model consists solely of convolutional layers, a simple yet efficient framework for learning invariant and discriminative representations to address the distribution shifts caused by inter-session and inter-subject data variability. Experiments on four datasets demonstrate that our proposed methods outperform the most complex existing approaches by a large margin and achieve state-of-the-art results on inter-session and inter-subject scenarios and perform on par or competitively on intra-session gesture recognition. These performance gaps increase even more when a tiny amount (e.g., a single trial) of data is available on the target domain for adaptation. These outstanding experimental results provide evidence that the current state-of-the-art models may be overparameterized for sEMG-based inter-session and inter-subject gesture recognition tasks
    • 

    corecore