118 research outputs found

    Neural mechanisms of visual awareness and their modulation by social threat

    Get PDF
    The human brain can extract an enormous wealth of visual information from our surroundings. However, only a fraction of this immense data set ever becomes available to the observer’s awareness. How and why certain information is selected for awareness are questions under active investigation. Following two introductory chapters, this thesis contains six inter-related experimental chapters, through which I will explore two key outstanding questions in this field, using bistable perceptual paradigms to study conscious and non-conscious visual processing in healthy human volunteers. The first major theme focuses on adding new insight into the brain regions and networks that facilitate transfer between non-conscious and conscious modes of visual processing. In Chapters 3 and 4 I will use fMRI, both in task-related and resting-state conditions, to delineate areas, and their interactions (in terms of effective connectivity), which are relevant for transition between different conscious perceptual experiences. In Chapter 5 I will focus on one specific region in the proposed perceptual transition-related network (the frontal eye field) and explore its causal role in access to awareness using repetitive TMS. The second key question explored in this thesis is how social cues in the visual environment influence non-conscious visual processing as well as transition to conscious vision. In Chapter 6 I will study behavioural effects of non-conscious social cues from faces, and the relationship of these effects to focal brain anatomy. Based on finding slower perceptuomotor performance when non-conscious faces contain threatening cues in Chapter 6, I hypothesise that a defensive freezing response is engaged in such situations. The final two experimental chapters will explore the correlates of putative human freezing in the context of non-conscious social threat: using fMRI and psychophysiological measurements to study effects on perceptual transition in Chapter 7, and relating TMS-induced motor-evoked potentials and concurrent psychophysiological measurements to non-conscious perceptuomotor performance in Chapter 8. Taken together, the presented findings shed new light on the network of brain regions involved in transition between non-conscious and conscious modes of visual processing. In addition, they uncover novel mechanisms through which socially relevant visual cues shape our awareness of the visual world, with particular emphasis on the engagement of defensive responses by socially threatening stimuli. The concluding chapter discusses the implications of these findings and explores relevant avenues for future work

    Feedback information transfer in the human brain reflects bistable perception in the absence of report

    Get PDF
    In the search for the neural basis of conscious experience, perception and the cognitive processes associated with reporting perception are typically confounded as neural activity is recorded while participants explicitly report what they experience. Here, we present a novel way to disentangle perception from report using eye movement analysis techniques based on convolutional neural networks and neurodynamical analyses based on information theory. We use a bistable visual stimulus that instantiates two well-known properties of conscious perception: integration and differentiation. At any given moment, observers either perceive the stimulus as one integrated unitary object or as two differentiated objects that are clearly distinct from each other. Using electroencephalography, we show that measures of integration and differentiation based on information theory closely follow participants' perceptual experience of those contents when switches were reported. We observed increased information integration between anterior to posterior electrodes (front to back) prior to a switch to the integrated percept, and higher information differentiation of anterior signals leading up to reporting the differentiated percept. Crucially, information integration was closely linked to perception and even observed in a no-report condition when perceptual transitions were inferred from eye movements alone. In contrast, the link between neural differentiation and perception was observed solely in the active report condition. Our results, therefore, suggest that perception and the processes associated with report require distinct amounts of anterior-posterior network communication and anterior information differentiation. While front-to-back directed information is associated with changes in the content of perception when viewing bistable visual stimuli, regardless of report, frontal information differentiation was absent in the no-report condition and therefore is not directly linked to perception per se.</p

    Experimental Manipulation of Action Perception Based on Modeling Computations in Visual Cortex

    Get PDF
    Action perception, planning and execution is a broad area of study, crucial for future development of clinical therapies treating social cognitive disorders, as well as for building human-computer interaction systems and for giving foundation to an emerging field of developmental robotics. We took interest in basic mechanisms of action perception, and as a model area chose dynamic perception of body motion. The focus of this thesis has been on understanding how perception of actions can be manipulated, how to distill this understanding experimentally, and how to summarize via numerical simulation the neural mechanisms helping explain observed dynamic phenomena. Experimentally we have, first, shown how a careful manipulation of a static object depth cue can in principle modulate perception of actions. We chose the luminance gradient as a model cue, and linked action perception to a perceptual prior previously studied in object recognition – the lighting from above-prior. Second, we have explored the dynamic relationship between representations of actions that are naturally observed in spatiotemporal proximity. We have shown an adaptation aftereffect that may speak of brain mechanisms encoding social interactions. To qualitatively capture neural mechanisms behind ours and previous findings, we have additionally appealed to the perceptual bistability phenomenon. Bistable perception refers to the ability to spontaneously switch between two perceptual alternatives arising from an observation of a single stimulus. Addition of depth cues to biological motion stimulus resolves depth-ambiguity. To account for neural dynamics as well as for modulation of action percept by light source position, we used a combined architecture with a convolutional neural network computing shading and form features in biological motion stimuli, and a 2-dimensional neural field coding for walking direction and body configuration in the gait cycle. This single unified model matches experimentally observed switching statistics, dependence of recognized walking direction on the light source position, and makes a prediction for the adaptation aftereffect in perception of biological motion

    Neural mechanisms for reducing uncertainty in 3D depth perception

    Get PDF
    In order to navigate and interact within their environment, animals must process and interpret sensory information to generate a representation or ‘percept’ of that environment. However, sensory information is invariably noisy, ambiguous, or incomplete due to the constraints of sensory apparatus, and this leads to uncertainty in perceptual interpretation. To overcome these problems, sensory systems have evolved multiple strategies for reducing perceptual uncertainty in the face of uncertain visual input, thus optimizing goal-oriented behaviours. Two available strategies have been observed even in the simplest of neural systems, and are represented in Bayesian formulations of perceptual inference: sensory integration and prior experience. In this thesis, I present a series of studies that examine these processes and the neural mechanisms underlying them in the primate visual system, by studying depth perception in human observers. Chapters 2 & 3 used functional brain imaging to localize cortical areas involved in integrating multiple visual depth cues, which enhance observers’ ability to judge depth. Specifically, we tested which of two possible computational methods the brain uses to combine depth cues. Based on the results we applied disruption techniques to examine whether these select brain regions are critical for depth cue integration. Chapters 4 & 5 addressed the question of how memory systems operating over different time scales interact to resolve perceptual ambiguity when the retinal signal is compatible with more than one 3D interpretation of the world. Finally, we examined the role of higher cortical regions (parietal cortex) in depth perception and the resolution of ambiguous visual input by testing patients with brain lesions

    Cortical Dynamics of Visual Motion Perception: Short-Range and Long Range Apparent Motion

    Full text link
    This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (AFOSR-90-0083); Hughes Aircraft Company (S1-903136

    Feedback information transfer in the human brain reflects bistable perception in the absence of report

    Get PDF
    In the search for the neural basis of conscious experience, perception and the cognitive processes associated with reporting perception are typically confounded as neural activity is recorded while participants explicitly report what they experience. Here, we present a novel way to disentangle perception from report using eye movement analysis techniques based on convolutional neural networks and neurodynamical analyses based on information theory. We use a bistable visual stimulus that instantiates two well-known properties of conscious perception: integration and differentiation. At any given moment, observers either perceive the stimulus as one integrated unitary object or as two differentiated objects that are clearly distinct from each other. Using electroencephalography, we show that measures of integration and differentiation based on information theory closely follow participants’ perceptual experience of those contents when switches were reported. We observed increased information integration between anterior to posterior electrodes (front to back) prior to a switch to the integrated percept, and higher information differentiation of anterior signals leading up to reporting the differentiated percept. Crucially, information integration was closely linked to perception and even observed in a no-report condition when perceptual transitions were inferred from eye movements alone. In contrast, the link between neural differentiation and perception was observed solely in the active report condition. Our results, therefore, suggest that perception and the processes associated with report require distinct amounts of anterior–posterior network communication and anterior information differentiation. While front-to-back directed information is associated with changes in the content of perception when viewing bistable visual stimuli, regardless of report, frontal information differentiation was absent in the no-report condition and therefore is not directly linked to perception per se

    Kognitive Interpretationen mehrdeutiger visueller Reize

    Get PDF
    Unser Gehirn muss zu jeder Zeit relevante Signale von irrelevanten Informationen trennen. Dazu müssen diese als spezifische Einheiten erkannt und klassifiziert werden. Mehrdeutigkeit ist ein wesentlicher Aspekt dieses Verarbeitungsprozesses und kann durch verrauschte Eingangssignale und durch den Aufbau unserer sensorischer Systeme entstehen. Beispielsweise können Reize mehrdeutig sein, wenn sie verrauscht oder unvollständig sind oder nur kurzzeitig wahrgenommen werden. Unter solchen Bedingungen werden Wahrnehmung und Klassifikation eines Reizes deutlich erschwert. Bereits vorhandene kognitive Repräsentationen werden somit möglicherweise nicht aktiviert. Folglich müssen Rückschlüsse über die Reize aufgrund von Kontext und Erfahrung gezogen werden. Ein und derselbe Reiz kann jedoch unterschiedlich repräsentiert und im sensorischen System kodiert werden. Da nur eine Repräsentation die Basis zukünftigen Handelns bilden kann, entsteht eine Art Konkurrenz innerhalb der Wahrnehmung. Derartige Wahrnehmungsphänomene, die mit der Mehrdeutigkeit von Reizen in Verbindung stehen, bilden den Mittelpunkt der vorliegenden Dissertation. Wenn einem physikalisch konstanten Reiz mehrere Interpretationen zugeordnet werden, entsteht ein Wechsel zwischen diesen Einordnungen, den man wahrnimmt und Rivalität ("rivalry") nennt. In dieser Dissertation werden diverse neue Erkenntnisse zu diesem grundlegenden Phänomen der sensorischen Verarbeitung beschrieben. So wird gezeigt, dass Übergänge zwischen drei wahrgenommenen Interpretationen – ein vergleichsweise selten untersuchtes Phänomen, da Rivalität meist mit zweideutigen Reizen untersucht wird – vorhersehbaren Mustern folgen (Kapitel 2). Darüber hinaus zeigt sich, dass derartige Übergänge spezifische Eigenschaften aufweisen, welche die Geschwindigkeit und die Richtung ihrer räumlichen Ausbreitung im visuellen Feld bestimmen (Kapitel 3). Diese Eigenschaften der Mehrdeutigkeit werden weiterhin stark von Aufmerksamkeit und anderen, introspektiven Prozessen beeinflusst. Um die der Rivalität in der Wahrnehmung tatsächlich zugrundeliegenden Prozesse und die damit verbundenen Änderungen des Bewusstseins von derartigen subjektiven Prozessen abzugrenzen, müssen letztere kontrolliert oder sogar vollständig umgangen werden. Ein objektives Maß der Rivalität in der Wahrnehmung wird zur Lösung dieser Aufgabe vorgeschlagen und bietet eine wertvolle Alternative zu introspektivem Berichten über den Wahrnehmungszustand (Kapitel 4). Übergänge in der Wahrnehmung entstehen entlang einer bestimmten Merkmalsdimension des Reizes, wie beispielsweise der Orientierung des berühmten Neckerwürfels. Zudem kann auch eine Änderung in der Merkmalsdimension der Luminanz eine unterschiedliche Interpretation des Reizes hervorrufen. Es wird gezeigt, dass die Pupille kleiner wird, wenn eine Interpretation mit hoher Luminanz die Wahrnehmung übernimmt, und umgekehrt, dass die Pupille größer wird, wenn eine Interpretation mit niedriger Luminanz die Wahrnehmung übernimmt. Folglich kann die Pupille als ein zuverlässiges und objektives Maß für Änderungen in der Wahrnehmung verwendet werden. Durch die Verwendung solcher objektiven Maße konnten neue Eigenschaften der Übergänge in der Wahrnehmung aufgezeigt werden, welche die Theorie unterstützen, dass Introspektion die der Verarbeitung mehrdeutiger Situationen zugrundeliegenden Prozesse merklich beeinflussen kann. Als Nächstes wurden mehrdeutiger Reize im Zusammenhang mit der Wahrnehmung von Objekten eingesetzt (Kapitel 5). Am Beispiel der Kippfigur des "bewegten Diamanten" wird dabei die Bedeutung von mehrdeutigen Reizen veranschaulicht. Beim bewegten Diamanten werden zwei Interpretationen wahrgenommen, die sich entlang der Dimension der Objektkohärenz abwechseln. Das bedeutet, dass die Wahrnehmung zwischen einem einzelnen zusammenhängenden Objekt (Diamant) und mehreren unzusammenhängenden Komponenten kippt. Es wird gezeigt, dass die Interpretation des Reizes als ein einziges kohärentes Objekt, verglichen mit der Interpretation als mehrere Komponenten, zu einer Erhöhung der visuellen Empfindlichkeit innerhalb des Objektes führt. Diese Ergebnisse sind ein Beleg dafür, wie die Aktivierung einer Interpretation eines Reizes als Einzelobjekt (im Vergleich zur Komponentenwahrnehmung) dazu führt, dass die Aufmerksamkeit top-down zu den relevanten Bereichen des Gesichtsfeldes gelenkt wird. Es wird weiter untersucht, welche Eigenschaften des Reizes zu einer bottom-up Aktivierung der Interpretation solcher Objekte beitragen (Kapitel 6). Die Mehrdeutigkeit von Objekten kann erfolgreich aufgehoben werden, indem man einen starken Kontrast in Luminanz oder Farbe zwischen dem Objekt und dem Hintergrund erzeugt. Auch die Größe und die Form haben einen großen Einfluss auf die Detektion und Identifikation von Objekten. Des Weiteren sind die Eigenschaften eines Objektes nicht nur bestimmend für die Erfolgsquote bei der Objekterkennung, sondern ebenso bedeutend für die Speicherung der Repräsentation im Gedächtnis, beispielsweise von neu wahrgenommenen Objekten. Das Klassifizieren von Objekten durch die Versuchsperson wird ebenfalls durch Mehrdeutigkeit beeinflusst. So kann ein Objekt der Versuchsperson einerseits als neu erscheinen, obwohl es bereits bekannt war, weil es beispielsweise der Versuchsperson schon einmal gezeigt worden ist. Andererseits kann auch ein eigentlich unbekanntes Objekt der Versuchsperson dennoch vertraut vorkommen. In dieser Arbeit wird gezeigt, dass solche subjektiven Effekte einen Einfluss auf die Pupillengröße haben (Kapitel 7). Außerdem verkleinert sich die Pupille der Versuchspersonen beim Betrachten neuer Bilder stärker als bei bekannten. Ein ähnlicher Effekt wird gefunden, wenn das Bild vorher erfolgreich im Gedächtnis gespeichert wurde. Daher ist es wahrscheinlich, dass die Pupille die Verfestigung von neuen Objekten im Gedächtnis widerspiegelt. Abschließend wird untersucht, ob sich kognitive Prozesse, wie Entscheidungsfindung – ein wichtiger Prozess, falls mehreren Optionen zur Verfügung stehen und Mehrdeutigkeit aufgehoben werden soll – auch in der Pupille widerspiegeln (Kapitel 8). Es wird zunächst bestätigt, dass die Pupillen sich erweitern, nachdem man eine Entscheidung getroffen hat. Neu wird gezeigt, dass diese Pupillenausdehnungen erfolgreich von anderen Personen erkannt und verwendet werden können, um ein interaktives Spiel gegen die erste Person (den "Gegner") zu gewinnen. Insgesamt wird in dieser Dissertation untersucht, wie mehrdeutige Reize die Wahrnehmung beeinflussen und wie Mehrdeutigkeit verwendet werden kann, um Prozesse des Gehirns zu studieren. Es hat sich gezeigt, dass Mehrdeutigkeit vorhersehbaren Mustern folgt, sie objektiv mit Reflexen gemessen werden kann, und Einblicke in neuronale Prozesse wie Aufmerksamkeit, Objektwahrnehmung und Entscheidungsmechanismen liefern kann. Diese Ergebnisse zeigen, dass Mehrdeutigkeit eine zentrale Eigenschaft sensorischer Systeme ist, und Lebewesen in die Lage versetzt, mit ihrer Umwelt flexibel zu interagieren. Mehrdeutigkeit macht das Verhalten vielfältiger, ermöglicht es dem Gehirn, mit der Welt auf verschiedenen Wegen zu interagieren, und ist die Basis der Dynamik von Wahrnehmung, Interpretation und Entscheidung.Brains can sense and distinguish signals from background noise in physical environments, and recognize and classify them as distinct entities. Ambiguity is an inherent part of this process. It is a cognitive property that is generated by the noisy character of the signals, and by the design of the sensory systems that process them. Stimuli can be ambiguous if they are noisy, incomplete, or only briefly sensed. Such conditions may make stimuli indistinguishable from others and thereby difficult to classify as single entities by our sensory systems. In these cases, stimuli fail to activate a representation that may have been previously stored in the system. Deduction, through context and experience, is consequently needed to reach a decision on what is exactly sensed. Deduction can, however, also be subject to ambiguity as stimuli and their properties may receive multiple representations in the sensory system. In such cases, these multiple representations compete for perceptual dominance, that is, for becoming the single entity taken by the system as a reference point for subsequent behavior. These types of ambiguity and several phenomena that relate to them are at the center of this dissertation. Perceptual rivalry, the phenomenal experience of alternating percepts over time, is an example of how the brain may give multiple interpretations to a stimulus that is physically constant. Rivalry is a very typical and general sensory process and this thesis demonstrates some newly discovered properties of its dynamics. It was found that alternations between three perceptual interpretations – a relatively rare condition as rivalry generally occurs between two percepts – follow predictable courses (Chapter 2). Furthermore, such alternations had several properties that determine their speed and direction of spatial spread (suppression waves) in the visual field (Chapter 3). These properties of ambiguity were further strongly affected by attention and other introspective processes. To demarcate the true underlying process of perceptual rivalry and the accompanied changes in awareness, these subjective processes need to be either circumvented or controlled for. An objective measure of perceptual rivalry was proposed that resolved this issue and provided a good alternative for introspective report of ambiguous states (Chapter 4). Changes in percepts occur along a specific feature domain such as depth orientation for the famous Necker cube. Alternatively, luminance may also be a rivalry feature and one percept may appear brighter as the other rivaling percept. It was demonstrated that the pupil gets smaller when a percept with high luminance becomes dominant, and vice versa, gets bigger when a percept with low luminance gets dominant during perceptual rivalry. As such, the pupil can serve as a reliable objective indicator of changes in visual awareness. By using such reflexes during rivalry, several new properties of alternations were discovered and it was again confirmed that introspection can confound the true processes involved in ambiguity. Next, the usefulness of ambiguous stimuli was explored in the context of objects as entities (Chapter 5). Some ambiguous stimuli can induce two percepts that alternate along the feature domain of object coherency, that is, whether a single coherent object or multiple incoherent objects are seen. In other words, an ambiguous stimulus can induce two cognitive interpretations of either seeing an entity or not. It was reported that being aware of a single coherent object results in the increase in visual sensitivity for the areas that constitute the object. These results are evidence of how the activation of a representation of a single and unique object can guide and allocate attentional resources to relevant areas in the visual field in a top-down way. It was further explored which features help to bottom-up access such object representations (Chapter 6). Ambiguity of objects can be successfully resolved by adding strong contrasts between the object and its background in luminance and color. The size and variability of the object's shape was also found to be an important factor for its successful detection and identification. Furthermore, the characteristics of objects do not only determine the rate of success in a recognition task, but are equally important for the storage of their representations in memory if, for instance, the object is novel to the observer. The subjective experience of a novel object is also subject to ambiguity and objects may appear novel to the observer although they are familiar (i.e., previously shown to the observer), or vice versa, they appear familiar to the observer although they are actually novel. It was here shown that such subjective effects are reflected in the pupil (Chapter 7). In addition, if novel images were presented to observers, their pupils constricted stronger as compared to if familiar images were presented. Similarly, if novel stimuli were shown to observers, pupillary constrictions were stronger if these stimuli were successfully stored in memory as compared to those later forgotten. As such, the pupil reflected the cognitive process of novelty encoding. Finally, it was tested whether other cognitive processes, such as decision-making – an important process when multiple options are available and ambiguity has to be resolved with a conscious decision – were also reflected in changes of pupil size (Chapter 8). It was confirmed that the pupil tends to dilate after an observer has made a decision. These dilations can successfully be detected between individuals and further used to gain the upper hand during an interactive game. In sum, this thesis has explored how ambiguous signals affect perception and how ambiguity inside perceptual systems can be used to study processes of the brain. It is found that ambiguity follows predictable courses, can be objectively assessed with reflexes, and can provide insights into other neuronal mechanisms such as attention, object representations, and decision-making. These findings demonstrate that ambiguity is a core property of the sensory systems that enable living beings to interact with their surroundings. Ambiguity adds variation to behavior, allows the brain to flexibly interact with the world, and lies at the bottom of the dynamics of sense, interpretations, and behavioral decisions

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Visual Cortex

    Get PDF
    The neurosciences have experienced tremendous and wonderful progress in many areas, and the spectrum encompassing the neurosciences is expansive. Suffice it to mention a few classical fields: electrophysiology, genetics, physics, computer sciences, and more recently, social and marketing neurosciences. Of course, this large growth resulted in the production of many books. Perhaps the visual system and the visual cortex were in the vanguard because most animals do not produce their own light and offer thus the invaluable advantage of allowing investigators to conduct experiments in full control of the stimulus. In addition, the fascinating evolution of scientific techniques, the immense productivity of recent research, and the ensuing literature make it virtually impossible to publish in a single volume all worthwhile work accomplished throughout the scientific world. The days when a single individual, as Diderot, could undertake the production of an encyclopedia are gone forever. Indeed most approaches to studying the nervous system are valid and neuroscientists produce an almost astronomical number of interesting data accompanied by extremely worthy hypotheses which in turn generate new ventures in search of brain functions. Yet, it is fully justified to make an encore and to publish a book dedicated to visual cortex and beyond. Many reasons validate a book assembling chapters written by active researchers. Each has the opportunity to bind together data and explore original ideas whose fate will not fall into the hands of uncompromising reviewers of traditional journals. This book focuses on the cerebral cortex with a large emphasis on vision. Yet it offers the reader diverse approaches employed to investigate the brain, for instance, computer simulation, cellular responses, or rivalry between various targets and goal directed actions. This volume thus covers a large spectrum of research even though it is impossible to include all topics in the extremely diverse field of neurosciences
    • …
    corecore