1,713 research outputs found

    Supervised ANN vs. unsupervised SOM to classify EEG data for BCI: why can GMDH do better?

    Get PDF
    Construction of a system for measuring the brain activity (electroencephalogram (EEG)) and recognising thinking patterns comprises significant challenges, in addition to the noise and distortion present in any measuring technique. One of the most major applications of measuring and understanding EGG is the brain-computer interface (BCI) technology. In this paper, ANNs (feedforward back -prop and Self Organising Maps) for EEG data classification will be implemented and compared to abductive-based networks, namely GMDH (Group Methods of Data Handling) to show how GMDH can optimally (i.e. noise and accuracy) classify a given set of BCI’s EEG signals. It is shown that GMDH provides such improvements. In this endeavour, EGG classification based on GMDH will be researched for comprehensible classification without scarifying accuracy. GMDH is suggested to be used to optimally classify a given set of BCI’s EEG signals. The other areas related to BCI will also be addressed yet within the context of this purpose

    Extraction of the Major Features of Brain Signals using Intelligent Networks

    Get PDF
    The brain-computer interface is considered one of the main tools for implementing and designing smart medical software. The analysis of brain signal data, called EEG, is one of the main tasks of smart medical diagnostic systems. While EEG signals have many components, one of the most important brain activities pursued is the P300 component. Detection of this component can help detect abnormalities and visualize the movement of organs of the body. In this research, a new method for processing EEG signals is proposed with the aim of detecting the P300 component. Major features were extracted from the BCI Competition IV EEG data set in a number of steps, i.e. normalization with the purpose of noise reduction using a median filter, feature extraction using a recurrent neural network, and classification using Twin Support Vector Machine. Then, a series of evaluation criteria were used to validate the proposed approach and compare it with similar methods. The results showed that the proposed approach has high accuracy

    Systematic Review of Experimental Paradigms and Deep Neural Networks for Electroencephalography-Based Cognitive Workload Detection

    Full text link
    This article summarizes a systematic review of the electroencephalography (EEG)-based cognitive workload (CWL) estimation. The focus of the article is twofold: identify the disparate experimental paradigms used for reliably eliciting discreet and quantifiable levels of cognitive load and the specific nature and representational structure of the commonly used input formulations in deep neural networks (DNNs) used for signal classification. The analysis revealed a number of studies using EEG signals in its native representation of a two-dimensional matrix for offline classification of CWL. However, only a few studies adopted an online or pseudo-online classification strategy for real-time CWL estimation. Further, only a couple of interpretable DNNs and a single generative model were employed for cognitive load detection till date during this review. More often than not, researchers were using DNNs as black-box type models. In conclusion, DNNs prove to be valuable tools for classifying EEG signals, primarily due to the substantial modeling power provided by the depth of their network architecture. It is further suggested that interpretable and explainable DNN models must be employed for cognitive workload estimation since existing methods are limited in the face of the non-stationary nature of the signal.Comment: 10 Pages, 4 figure

    Brain informed transfer learning for categorizing construction hazards

    Full text link
    A transfer learning paradigm is proposed for "knowledge" transfer between the human brain and convolutional neural network (CNN) for a construction hazard categorization task. Participants' brain activities are recorded using electroencephalogram (EEG) measurements when viewing the same images (target dataset) as the CNN. The CNN is pretrained on the EEG data and then fine-tuned on the construction scene images. The results reveal that the EEG-pretrained CNN achieves a 9 % higher accuracy compared with a network with same architecture but randomly initialized parameters on a three-class classification task. Brain activity from the left frontal cortex exhibits the highest performance gains, thus indicating high-level cognitive processing during hazard recognition. This work is a step toward improving machine learning algorithms by learning from human-brain signals recorded via a commercially available brain-computer interface. More generalized visual recognition systems can be effectively developed based on this approach of "keep human in the loop"

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    Past, Present, and Future of EEG-Based BCI Applications

    Get PDF
    An electroencephalography (EEG)-based brain–computer interface (BCI) is a system that provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI applications have initially been developed for medical purposes, with the aim of facilitating the return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also gained increasing significance in the non-medical domain, improving the life of healthy people, for instance, by making it more efficient, collaborative and helping develop themselves. The objective of this review is to give a systematic overview of the literature on EEG-based BCI applications from the period of 2009 until 2019. The systematic literature review has been prepared based on three databases PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In this review, 202 publications were selected based on specific eligibility criteria. The distribution of the research between the medical and non-medical domain has been analyzed and further categorized into fields of research within the reviewed domains. In this review, the equipment used for gathering EEG data and signal processing methods have also been reviewed. Additionally, current challenges in the field and possibilities for the future have been analyzed

    Robust common spatial pattern estimation using dynamic time warping to improve BCI systems

    Get PDF
    Common spatial patterns (CSP) is one of the most popular feature extraction algorithms for brain-computer interfaces (BCI). However, CSP is known to be very sensitive to artifacts and prone to overfitting. This paper proposes a novel dynamic time warping (DTW)-based approach to improve CSP covariance matrix estimation and hence improve feature extraction. Dynamic time warping is widely used for finding an optimal alignment between two time-dependent signals under predefined conditions. The proposed approach reduces within class temporal variations and non-stationarity by aligning the training trials to the average of the trials from the same class. The proposed DTW-based CSP approach is applied to the support vector machines (SVM) classifier and evaluated using one of the publicly available motor imagery datasets. The results showed that the proposed approach, when compared to the classical CSP, improved the classification accuracy from 78% to 83% on average. Importantly, for some subjects, the improvement was around 10%

    Review of medical data analysis based on spiking neural networks

    Full text link
    Medical data mainly includes various types of biomedical signals and medical images, which can be used by professional doctors to make judgments on patients' health conditions. However, the interpretation of medical data requires a lot of human cost and there may be misjudgments, so many scholars use neural networks and deep learning to classify and study medical data, which can improve the efficiency and accuracy of doctors and detect diseases early for early diagnosis, etc. Therefore, it has a wide range of application prospects. However, traditional neural networks have disadvantages such as high energy consumption and high latency (slow computation speed). This paper presents recent research on signal classification and disease diagnosis based on a third-generation neural network, the spiking neuron network, using medical data including EEG signals, ECG signals, EMG signals and MRI images. The advantages and disadvantages of pulsed neural networks compared with traditional networks are summarized and its development orientation in the future is prospected
    • …
    corecore