8,423 research outputs found

    Human Gait Analysis in Neurodegenerative Diseases: a Review

    Get PDF
    This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegnerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis. First, the phases of the human gait cycle are briefly explained, along with some non-normal gait patterns (gait abnormalities) typical of some neurodegenerative diseases. The work continues with a survey on the publicly available datasets principally used for comparing results. Then the paper reports the most common processing techniques for both feature selection and extraction and for classification and clustering. Finally, a conclusive discussion on current open problems and future directions is outlined

    Segmentation and Feature Extraction of Human Gait Motion

    Get PDF
    This paper presents segmentation and feature extraction of human gait motion. The methodology of this paper focuses on segmenting β€˜XYZ’ position curves, in reference to time of gait motion based on the velocity or acceleration of the movement. The extracted features include amplitude, time, and equally spaced sample data, maximum and minimum for each segment. The results can be used for reconstruction of a viable dataset that is critical for simulation and validation of human gaits. We propose a method to enables the fitting of the same curve with limited data. Such data sets may prove valuable for studying impairments and improving simulations of rehabilitation tools, and statistical classification for researchers worldwide

    Gait Classification Based on Micro-Doppler Features

    Get PDF
    This paper focuses on the classification of human gaits based on micro-Doppler signatures. The micro-Doppler signatures can represent detailed information about the human gaits, which helps in judging the threat of a personnel target. The proposed method consists of three major steps. Firstly, the micro-Doppler signatures are obtained by performing time-frequency analysis on the radar data. Then two micro-Doppler features are extracted from the time-frequency domain. Finally, the one-versus-one support vector machine (SVM) is used to realize multi-class classification. Experiments on real data show that, with the selected features, high classification accuracy of the human gaits of interest can be achieved

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    2.5D multi-view gait recognition based on point cloud registration

    Get PDF
    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM
    • …
    corecore