32 research outputs found

    Inquiry in University Mathematics Teaching and Learning. The Platinum Project

    Get PDF
    The book presents developmental outcomes from an EU Erasmus+ project involving eight partner universities in seven countries in Europe. Its focus is the development of mathematics teaching and learning at university level to enhance the learning of mathematics by university students. Its theoretical focus is inquiry-based teaching and learning. It bases all activity on a three-layer model of inquiry: (1) Inquiry in mathematics and in the learning of mathematics in lecture, tutorial, seminar or workshop, involving students and teachers; (2) Inquiry in mathematics teaching involving teachers exploring and developing their own practices in teaching mathematics; (3) Inquiry as a research process, analysing data from layers (1) and (2) to advance knowledge inthe field. As required by the Erasmus+ programme, it defines Intellectual Outputs (IOs) that will develop in the project. PLATINUM has six IOs: The Inquiry-based developmental model; Inquiry communities in mathematics learning and teaching; Design of mathematics tasks and teaching units; Inquiry-based professional development activity; Modelling as an inquiry process; Evalutation of inquiry activity with students. The project has developed Inquiry Communities, in each of the partner groups, in which mathematicians and educators work together in supportive collegial ways to promote inquiry processes in mathematics learning and teaching. Through involving students in inquiry activities, PLATINUM aims to encourage students‘ own in-depth engagement with mathematics, so that they develop conceptual understandings which go beyond memorisation and the use of procedures. Indeed the eight partners together have formed an inquiry community, working together to achieve PLATINUM goals within the specific environments of their own institutions and cultures. Together we learn from what we are able to achieve with respect to both common goals and diverse environments, bringing a richness of experience and learning to this important area of education. Inquiry communities enable participants to address the tensions and issues that emerge in developmental processes and to recognise the critical nature of the developmental process. Through engaging in inquiry-based development, partners are enabled and motivated to design activities for their peers, and for newcomers to university teaching of mathematics, to encourage their participation in new forms of teaching, design of teaching, and activities for students. Such professional development design is an important outcome of PLATINUM. One important area of inquiry-based activity is that of „modelling“ in mathematics. Partners have worked together across the project to investigate the nature of modelling activities and their use with students. Overall, the project evaluates its activity in these various parts to gain insights to the sucess of inquiry based teaching, learning and development as well as the issues and tensions that are faced in putting into practice its aims and goals

    Inquiry in University Mathematics Teaching and Learning

    Get PDF
    The book presents developmental outcomes from an EU Erasmus+ project involving eight partner universities in seven countries in Europe. Its focus is the development of mathematics teaching and learning at university level to enhance the learning of mathematics by university students. Its theoretical focus is inquiry-based teaching and learning. It bases all activity on a three-layer model of inquiry: (1) Inquiry in mathematics and in the learning of mathematics in lecture, tutorial, seminar or workshop, involving students and teachers; (2) Inquiry in mathematics teaching involving teachers exploring and developing their own practices in teaching mathematics; (3) Inquiry as a research process, analysing data from layers (1) and (2) to advance knowledge inthe field. As required by the Erasmus+ programme, it defines Intellectual Outputs (IOs) that will develop in the project. PLATINUM has six IOs: The Inquiry-based developmental model; Inquiry communities in mathematics learning and teaching; Design of mathematics tasks and teaching units; Inquiry-based professional development activity; Modelling as an inquiry process; Evalutation of inquiry activity with students. The project has developed Inquiry Communities, in each of the partner groups, in which mathematicians and educators work together in supportive collegial ways to promote inquiry processes in mathematics learning and teaching. Through involving students in inquiry activities, PLATINUM aims to encourage students` own in-depth engagement with mathematics, so that they develop conceptual understandings which go beyond memorisation and the use of procedures. Indeed the eight partners together have formed an inquiry community, working together to achieve PLATINUM goals within the specific environments of their own institutions and cultures. Together we learn from what we are able to achieve with respect to both common goals and diverse environments, bringing a richness of experience and learning to this important area of education. Inquiry communities enable participants to address the tensions and issues that emerge in developmental processes and to recognise the critical nature of the developmental process. Through engaging in inquiry-based development, partners are enabled and motivated to design activities for their peers, and for newcomers to university teaching of mathematics, to encourage their participation in new forms of teaching, design of teaching, and activities for students. Such professional development design is an important outcome of PLATINUM. One important area of inquiry-based activity is that of “modelling” in mathematics. Partners have worked together across the project to investigate the nature of modelling activities and their use with students. Overall, the project evaluates its activity in these various parts to gain insights to the sucess of inquiry based teaching, learning and development as well as the issues and tensions that are faced in putting into practice its aims and goals

    The art and architecture of mathematics education: a study in metaphors

    Get PDF
    This chapter presents the summary of a talk given at the Eighth European Summer University, held in Oslo in 2018. It attempts to show how art, literature, and history, can paint images of mathematics that are not only useful but relevant to learners as they can support their personal development as well as their appreciation of mathematics as a discipline. To achieve this goal, several metaphors about and of mathematics are explored

    Enacting Inquiry Learning in Mathematics through History

    Get PDF
    International audienceWe explain how history of mathematics can function as a means for enacting inquiry learning activities in mathematics as a scientific subject. It will be discussed how students develop informed conception about i) the epistemology of mathematics, ii) of how mathematicians produce mathematical knowledge, and iii) what kind of questions that drive mathematical research. We give examples from the mathematics education at Roskilde University and we show how (teacher) students from this program are themselves capable of using history to establish inquiry learning environments in mathematics in high school. The realization is argued for in the context of an explicit-reflective framework in the sense of Abd-El-Khalick (2013) and his work in science education

    Inquiry in university mathematics teaching and learning: The PLATINUM project

    Get PDF
    This book reports on the work carried out within the Erasmus+ PLATINUM project by eight European universities from seven countries: the University of Agder, in Kristiansand, Norway—the coordinator of the project—the University of Amsterdam in The Netherlands, Masaryk University and Brno University of Technology in Czech Republic, Leibniz University Hannover in Germany, the Complutense University of Madrid in Spain, Loughborough University in the UK, and Borys Grinchenko Kyiv University in Ukraine. In this 21st century, projects aimed at studying and disseminating inquiry-based approaches in the teaching of STEM disciplines in primary and secondary education have proliferated in Europe, benefiting from the impulse of the publication of the Rocard’s report in 2007.1 However, university mathematics teaching has remained mainly traditional, especially in the first university years, crucial for the students’ orientation and retention
    corecore