5,696 research outputs found

    Content Authoring Using Single Image in Urban Environments for Augmented Reality

    Full text link
    © 2016 IEEE. Content authoring is one of essentials of Augmented Reality (AR), which is to emplace an augmented content on a true part of a real scene in order to enhance users' visual experience. For the case of street view single 2D images, the challenge emerges because of clutter environments and unknown position and orientation related to camera pose. Although existing methods based on 2D feature point matching or vanishing point registration may recover the camera pose, the robustness is always challenging because of the uncertainty of feature point detection on texture-less region and displacement of vanishing point detection caused by irregular lines detected on the scene. By taking the advantages of characteristics of the man-made object (e.g. building) widely seen on the street view, this paper proposes a simple yet efficient content authoring approach. In this approach, the building dominant plane where the virtual object will be emplaced is detected and then projected to the frontal-parallel view on which the virtual object can be reliably emplaced. Once the virtual object and the true scene are embedded to each other on the frontal-parallel view, they are able to be converted back to the original view using inverse projection without any distortion. Experiments on public databases show that the proposed method can recover camera pose and implement content emplacement with promising performance

    Automatic Registration of Optical Aerial Imagery to a LiDAR Point Cloud for Generation of City Models

    Get PDF
    This paper presents a framework for automatic registration of both the optical and 3D structural information extracted from oblique aerial imagery to a Light Detection and Ranging (LiDAR) point cloud without prior knowledge of an initial alignment. The framework employs a coarse to fine strategy in the estimation of the registration parameters. First, a dense 3D point cloud and the associated relative camera parameters are extracted from the optical aerial imagery using a state-of-the-art 3D reconstruction algorithm. Next, a digital surface model (DSM) is generated from both the LiDAR and the optical imagery-derived point clouds. Coarse registration parameters are then computed from salient features extracted from the LiDAR and optical imagery-derived DSMs. The registration parameters are further refined using the iterative closest point (ICP) algorithm to minimize global error between the registered point clouds. The novelty of the proposed approach is in the computation of salient features from the DSMs, and the selection of matching salient features using geometric invariants coupled with Normalized Cross Correlation (NCC) match validation. The feature extraction and matching process enables the automatic estimation of the coarse registration parameters required for initializing the fine registration process. The registration framework is tested on a simulated scene and aerial datasets acquired in real urban environments. Results demonstrates the robustness of the framework for registering optical and 3D structural information extracted from aerial imagery to a LiDAR point cloud, when co-existing initial registration parameters are unavailable

    3D Reconstruction of Indoor Corridor Models Using Single Imagery and Video Sequences

    Get PDF
    In recent years, 3D indoor modeling has gained more attention due to its role in decision-making process of maintaining the status and managing the security of building indoor spaces. In this thesis, the problem of continuous indoor corridor space modeling has been tackled through two approaches. The first approach develops a modeling method based on middle-level perceptual organization. The second approach develops a visual Simultaneous Localisation and Mapping (SLAM) system with model-based loop closure. In the first approach, the image space was searched for a corridor layout that can be converted into a geometrically accurate 3D model. Manhattan rule assumption was adopted, and indoor corridor layout hypotheses were generated through a random rule-based intersection of image physical line segments and virtual rays of orthogonal vanishing points. Volumetric reasoning, correspondences to physical edges, orientation map and geometric context of an image are all considered for scoring layout hypotheses. This approach provides physically plausible solutions while facing objects or occlusions in a corridor scene. In the second approach, Layout SLAM is introduced. Layout SLAM performs camera localization while maps layout corners and normal point features in 3D space. Here, a new feature matching cost function was proposed considering both local and global context information. In addition, a rotation compensation variable makes Layout SLAM robust against cameras orientation errors accumulations. Moreover, layout model matching of keyframes insures accurate loop closures that prevent miss-association of newly visited landmarks to previously visited scene parts. The comparison of generated single image-based 3D models to ground truth models showed that average ratio differences in widths, heights and lengths were 1.8%, 3.7% and 19.2% respectively. Moreover, Layout SLAM performed with the maximum absolute trajectory error of 2.4m in position and 8.2 degree in orientation for approximately 318m path on RAWSEEDS data set. Loop closing was strongly performed for Layout SLAM and provided 3D indoor corridor layouts with less than 1.05m displacement errors in length and less than 20cm in width and height for approximately 315m path on York University data set. The proposed methods can successfully generate 3D indoor corridor models compared to their major counterpart

    Low-rank Based Algorithms for Rectification, Repetition Detection and De-noising in Urban Images

    Full text link
    In this thesis, we aim to solve the problem of automatic image rectification and repeated patterns detection on 2D urban images, using novel low-rank based techniques. Repeated patterns (such as windows, tiles, balconies and doors) are prominent and significant features in urban scenes. Detection of the periodic structures is useful in many applications such as photorealistic 3D reconstruction, 2D-to-3D alignment, facade parsing, city modeling, classification, navigation, visualization in 3D map environments, shape completion, cinematography and 3D games. However both of the image rectification and repeated patterns detection problems are challenging due to scene occlusions, varying illumination, pose variation and sensor noise. Therefore, detection of these repeated patterns becomes very important for city scene analysis. Given a 2D image of urban scene, we automatically rectify a facade image and extract facade textures first. Based on the rectified facade texture, we exploit novel algorithms that extract repeated patterns by using Kronecker product based modeling that is based on a solid theoretical foundation. We have tested our algorithms in a large set of images, which includes building facades from Paris, Hong Kong and New York
    corecore