2,637 research outputs found

    Characterization and modelling of GaAs MESFETs in the design of nonlinear circuits

    Get PDF

    Semiconductor Processes and Devices Modeling

    Get PDF

    Modeling of reverse current effects in trench-based smart power technologies

    Get PDF
    The increase in complexity in todays automotive products is driven by the trend to implement new features in the area of safety, comfort and entertainment. This significantly raises the safety requirements of new ICs and the identification of possible sources of failures gains in priority. One of these failure sources is the injection of parasitic currents into the common substrate of a chip. This does not only occur during exceptions in the operation of the IC but also affects applications which require switching of inductive loads. The difficulty to handle substrate current injection originates from its nonlocality as it potentially influences the entire IC. In this thesis a point-to-point modeling scheme for Spice-based circuit simulation is proposed. It addresses parasitic coupling effects caused by minority carrier injection into the substrate of a deep-trench based BCD technology. Since minority carriers can diffuse over large distances in the common substrate and disturb circuits in their normal operation, a quantitative approach is necessary to address this parasitic effect early during design. An equivalent circuit based on the chip's design is extracted and the coupling effect between the perturbing devices and the susceptible nodes is represented by Verilog-AMS models. These models represent the three main components in the coupling path which are the forward biased diode at the perturbing device, the reverse biased diode at the susceptible node, and the intermediary common substrate of the chip. An automated layout extraction framework identifies the injectors of the minority carriers and the sensitive devices. Additionally, it determines the relevant parameters for the models. The curve fitting functions of the models are derived from calibrated TCAD simulations which are based on the measurement results of two dedicated test chips. The test chips were specifically designed to provide detailed analysis capabilities of this parasitic coupling effect. This led to a design which contains several different injector nodes and a large number of susceptible nodes spread over the entire area of the chip. Additionally, the chip incorporates the most commonly used layout-based guard structures to obtain an in-depth insight on their efficiency in recent BCD technologies. Based on the results obtained by measurements of the test chips the underlying physics of the coupling effect are discussed in detail. Minority carrier injection in the substrate is not much different to the operating principle of a bipolar transistor and the differences and similarities between them are presented. This forms the basis of the model development and explains how the equations of the Verilog-AMS models were derived. Finally, the entire simulation flow is evaluated and the simulation results are compared to measurements of the chip

    Thermal & electrical simulation for the development of solid-phase polycrystalline silicon TFTs

    Get PDF
    Solid phase crystallization (SPC) is a processing technique used for conversion of amorphous silicon (a-Si) to polycrystalline silicon (poly-Si). SPC can potentially be used as an alternative to excimer laser annealing to fabricate the semiconductor layer for thin-film transistors (TFTs) in active-matrix liquid crystal display (AMLCD). It is a technique suitable for large-area applications since it involves easily scalable thermal processes in the form of rapid thermal annealing (RTA) and furnace annealing (FA). The SPC parameter space involves the time and temperature of the FA, and the time, temperature, and number of pulses in the RTA process. In developing new process flows for thin-film transistors (TFTs) using SPC, thermal and electrical device simulation are invaluable tools. Comsol® was utilized to explore this SPC experimental parameter space, and provided important insight on temperature conditions not directly measureable on glass substrates (see Fig. 1). Silvaco\u27s Atlas® was utilized to evaluate the TFT response variables of sub-threshold slope (SS), threshold voltage (VT), and maximum current (Imax). Further, a procedure for fitting TFT device characteristics using Atlas was developed. From this simulation fit (see Fig. 2), theoretical trap state distributions for the semiconducting film can be extracted, as well as the trap state distributions at the oxide-semiconductor interfaces

    Statistical circuit simulations - from ‘atomistic’ compact models to statistical standard cell characterisation

    Get PDF
    This thesis describes the development and application of statistical circuit simulation methodologies to analyse digital circuits subject to intrinsic parameter fluctuations. The specific nature of intrinsic parameter fluctuations are discussed, and we explain the crucial importance to the semiconductor industry of developing design tools which accurately account for their effects. Current work in the area is reviewed, and three important factors are made clear: any statistical circuit simulation methodology must be based on physically correct, predictive models of device variability; the statistical compact models describing device operation must be characterised for accurate transient analysis of circuits; analysis must be carried out on realistic circuit components. Improving on previous efforts in the field, we posit a statistical circuit simulation methodology which accounts for all three of these factors. The established 3-D Glasgow atomistic simulator is employed to predict electrical characteristics for devices aimed at digital circuit applications, with gate lengths from 35 nm to 13 nm. Using these electrical characteristics, extraction of BSIM4 compact models is carried out and their accuracy in performing transient analysis using SPICE is validated against well characterised mixed-mode TCAD simulation results for 35 nm devices. Static d.c. simulations are performed to test the methodology, and a useful analytic model to predict hard logic fault limitations on CMOS supply voltage scaling is derived as part of this work. Using our toolset, the effect of statistical variability introduced by random discrete dopants on the dynamic behaviour of inverters is studied in detail. As devices scaled, dynamic noise margin variation of an inverter is increased and higher output load or input slew rate improves the noise margins and its variation. Intrinsic delay variation based on CV/I delay metric is also compared using ION and IEFF definitions where the best estimate is obtained when considering ION and input transition time variations. Critical delay distribution of a path is also investigated where it is shown non-Gaussian. Finally, the impact of the cell input slew rate definition on the accuracy of the inverter cell timing characterisation in NLDM format is investigated

    On the relationship between carrier mobility and velocity in sub-50 mm MOSFETs via calibrated Monte Carlo simulation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, June 2004."May 2004."Includes bibliographical references (leaves 38-39).Subsequent to accurate 2D inverse modeling in the regime sensitive to electrostatics of industrial sub-50 nm NMOSFETs, a 2D full-band Monte Carlo device simulator was calibrated in the regime sensitive to transport parameters. The relationship between electron mobility and high-electric-field velocity at the source-channel potential energy barrier was investigated. The results show a strong correlation, as was demonstrated previously experimentally. Moreover, further proof is provided that the velocity at which carriers are injected from the source region in modem NMOSFET's is only about half of the limiting thermal velocity.by Osama Munir Nayfeh.S.M

    FIT-2, an extraction program based on the SPICE-PAC simulation software

    Get PDF
    FIT-2, an interactive program for extraction of transistor parameters for SPICE-like circuit simulators, is discussed. It is based on a circuit simulator rather than on an explicit set of model equations. Several optimization methods are built into the program to provide robust as well as sufficient fitting of device characteristics. The flexibility of the approach is obtained by specification of extraction details in the data sets rather than the extraction procedure. Extraction results for heterojunction bipolar transistors are used as an illustration of FIT-2's capabilities. Several directions for further research are identified
    • …
    corecore