341 research outputs found

    Comparing Different Methods for Disfluency Structure Detection

    Get PDF
    This paper presents a number of experiments focusing on assessing the performance of different machine learning methods on the identification of disfluencies and their distinct structural regions over speech data. Several machine learning methods have been applied, namely Naive Bayes, Logistic Regression, Classification and Regression Trees (CARTs), J48 and Multilayer Perceptron. Our experiments show that CARTs outperform the other methods on the identification of the distinct structural disfluent regions. Reported experiments are based on audio segmentation and prosodic features, calculated from a corpus of university lectures in European Portuguese, containing about 32h of speech and about 7.7% of disfluencies. The set of features automatically extracted from the forced alignment corpus proved to be discriminant of the regions contained in the production of a disfluency. This work shows that using fully automatic prosodic features, disfluency structural regions can be reliably identified using CARTs, where the best results achieved correspond to 81.5% precision, 27.6% recall, and 41.2% F-measure. The best results concern the detection of the interregnum, followed by the detection of the interruption point

    A Study of Accomodation of Prosodic and Temporal Features in Spoken Dialogues in View of Speech Technology Applications

    Get PDF
    Inter-speaker accommodation is a well-known property of human speech and human interaction in general. Broadly it refers to the behavioural patterns of two (or more) interactants and the effect of the (verbal and non-verbal) behaviour of each to that of the other(s). Implementation of thisbehavior in spoken dialogue systems is desirable as an improvement on the naturalness of humanmachine interaction. However, traditional qualitative descriptions of accommodation phenomena do not provide sufficient information for such an implementation. Therefore, a quantitativedescription of inter-speaker accommodation is required. This thesis proposes a methodology of monitoring accommodation during a human or humancomputer dialogue, which utilizes a moving average filter over sequential frames for each speaker. These frames are time-aligned across the speakers, hence the name Time Aligned Moving Average (TAMA). Analysis of spontaneous human dialogue recordings by means of the TAMA methodology reveals ubiquitous accommodation of prosodic features (pitch, intensity and speech rate) across interlocutors, and allows for statistical (time series) modeling of the behaviour, in a way which is meaningful for implementation in spoken dialogue system (SDS) environments.In addition, a novel dialogue representation is proposed that provides an additional point of view to that of TAMA in monitoring accommodation of temporal features (inter-speaker pause length and overlap frequency). This representation is a percentage turn distribution of individual speakercontributions in a dialogue frame which circumvents strict attribution of speaker-turns, by considering both interlocutors as synchronously active. Both TAMA and turn distribution metrics indicate that correlation of average pause length and overlap frequency between speakers can be attributed to accommodation (a debated issue), and point to possible improvements in SDS “turntaking” behaviour. Although the findings of the prosodic and temporal analyses can directly inform SDS implementations, further work is required in order to describe inter-speaker accommodation sufficiently, as well as to develop an adequate testing platform for evaluating the magnitude ofperceived improvement in human-machine interaction. Therefore, this thesis constitutes a first step towards a convincingly useful implementation of accommodation in spoken dialogue systems

    Automatic detection of disfluencies in a corpus of university lectures

    Get PDF
    This dissertation focuses on the identification of disfluent sequences and their distinct structural regions. Reported experiments are based on audio segmentation and prosodic features, calculated from a corpus of university lectures in European Portuguese, containing about 32 hours of speech and about 7.7% of disfluencies. The set of features automatically extracted from the forced alignment corpus proved to be discriminant of the regions contained in the production of a disfluency. The best results concern the detection of the interregnum, followed by the detection of the interruption point. Several machine learning methods have been applied, but experiments show that Classification and Regression Trees usually outperform the other methods. The set of most informative features for cross-region identification encompasses word duration ratios, word confidence score, silent ratios, and pitch and energy slopes. Features such as the number of phones and syllables per word proved to be more useful for the identification of the interregnum, whereas energy slopes were most suited for identifying the interruption point. We have also conducted initial experiments on automatic detecting filled pauses, the most frequent disfluency type. For now, only force aligned transcripts were used, since the ASR system is not well adapted to this domain. This study is a step towards automatic detection of filled pauses for European Portuguese using prosodic features. Future work will extend this study for fully automatic transcripts, and will also tackle other domains, also exploring extended sets of linguistic features.Esta tese aborda a identificação de sequências disfluentes e respetivas regiões estruturais. As experiências aqui descritas baseiam-se em segmentação e informação relativa a prosódia, calculadas a partir de um corpus de aulas universitárias em Português Europeu, contendo cerca de 32 horas de fala e de cerca de 7,7% de disfluências. O conjunto de características utilizadas provou ser discriminatório na identificação das regiões contidas na produção de disfluências. Os melhores resultados dizem respeito à deteção do interregnum, seguida da deteção do ponto de interrupção. Foram testados vários métodos de aprendizagem automática, sendo as Árvores de Decisão e Regressão as que geralmente obtiveram os melhores resultados. O conjunto de características mais informativas para a identificação e distinção de regiões disfluentes abrange rácios de duração de palavras, nível de confiança da palavra atual, rácios envolvendo silêncios e declives de pitch e de energia. Características tais como o número de fones e sílabas por palavra provaram ser mais úteis para a identificação do interregnum, enquanto pitch e energia foram os mais adequados para identificar o ponto de interrupção. Foram também realizadas experiências focando a deteção de pausas preenchidas. Por enquanto, para estas experiências foi utilizado apenas material proveniente de alinhamento forçado, já que o sistema de reconhecimento automático não está bem adaptado a este domínio. Este estudo representa um novo passo no sentido da deteção automática de pausas preenchidas para Português Europeu, utilizando recursos prosódicos. Em trabalho futuro pretende-se estender esse estudo para transcrições automáticas e também abordar outros domínios, explorando conjuntos mais extensos de características linguísticas

    Acoustic correlates of encoded prosody in written conversation

    Get PDF
    This thesis presents an analysis of certain punctuation devices such as parenthesis, italics and emphatic spellings with respect to their acoustic correlates in read speech. The class of punctuation devices under investigation are referred to as prosodic markers. The thesis therefore presents an analysis of features of the spoken language which are represented symbolically in text. Hence it is a characterization of aspects of the spoken language which have been transcribed or symbolized in the written medium and then translated back into a spoken form by a reader. The thesis focuses in particular on the analysis of parenthesis, the examination of encoded prominence and emphasis, and also addresses the use of paralinguistic markers which signal attitude or emotion.In an effort to avoid the use of self constructed or artificial material containing arbitrary symbolic or prosodic encodings, all material used for empirical analysis was taken from examples of electronic written exchanges on the Internet, such as from electronic mail messages and from articles posted on electronic newsgroups and news bulletins. This medium of language, which is referred to here as written conversation, provides a rich source of material containing encoded prosodic markers. These occur in the form of 'smiley faces' expressing attitudes or feelings, words highlighted by a number of means such as capitalization, italics, underscore characters, or asterisks, and in the form of dashes or parentheses, which provide suggestions on how the information in a text or sentence may be structured with regard to its informational content.Chapter 2 investigates in detail the genre of written conversation with respect to its place in an emerging continuum between written and spoken language, concentrating on transcriptional devices and their function as indicators of prosody. The implications these symbolic representations bear on the task of reading, by humans as well as machines, are then examined.Chapters 3 and 4 turn to the acoustic analysis of parentheticals and emphasis markers respectively. The experimental work in this thesis is based on readings of a corpus of selected materials from written conversation with the acoustic analysis concentrating on the differences between readings of texts with prosodic markers and readings of the same texts from which prosodic markers have been removed. Finally, the effect of prosodic markers is tested in perception experiments involving both human and resynthesized utterances

    Computational modeling of turn-taking dynamics in spoken conversations

    Get PDF
    The study of human interaction dynamics has been at the center for multiple research disciplines in- cluding computer and social sciences, conversational analysis and psychology, for over decades. Recent interest has been shown with the aim of designing computational models to improve human-machine interaction system as well as support humans in their decision-making process. Turn-taking is one of the key aspects of conversational dynamics in dyadic conversations and is an integral part of human- human, and human-machine interaction systems. It is used for discourse organization of a conversation by means of explicit phrasing, intonation, and pausing, and it involves intricate timing. In verbal (e.g., telephone) conversation, the turn transitions are facilitated by inter- and intra- speaker silences and over- laps. In early research of turn-taking in the speech community, the studies include durational aspects of turns, cues for turn yielding intention and lastly designing turn transition modeling for spoken dia- log agents. Compared to the studies of turn transitions very few works have been done for classifying overlap discourse, especially the competitive act of overlaps and function of silences. Given the limitations of the current state-of-the-art, this dissertation focuses on two aspects of con- versational dynamics: 1) design automated computational models for analyzing turn-taking behavior in a dyadic conversation, 2) predict the outcome of the conversations, i.e., observed user satisfaction, using turn-taking descriptors, and later these two aspects are used to design a conversational profile for each speaker using turn-taking behavior and the outcome of the conversations. The analysis, experiments, and evaluation has been done on a large dataset of Italian call-center spoken conversations where customers and agents are engaged in real problem-solving tasks. Towards solving our research goal, the challenges include automatically segmenting and aligning speakers’ channel from the speech signal, identifying and labeling the turn-types and its functional aspects. The task becomes more challenging due to the presence of overlapping speech. To model turn- taking behavior, the intension behind these overlapping turns needed to be considered. However, among all, the most critical question is how to model observed user satisfaction in a dyadic conversation and what properties of turn-taking behavior can be used to represent and predict the outcome. Thus, the computational models for analyzing turn-taking dynamics, in this dissertation includes au- tomatic segmenting and labeling turn types, categorization of competitive vs non-competitive overlaps, silences (e.g., lapse, pauses) and functions of turns in terms of dialog acts. The novel contributions of the work presented here are to 1. design of a fully automated turn segmentation and labeling (e.g., agent vs customer’s turn, lapse within the speaker, and overlap) system. 2. the design of annotation guidelines for segmenting and annotating the speech overlaps with the competitive and non-competitive labels. 3. demonstrate how different channels of information such as acoustic, linguistic, and psycholin- guistic feature sets perform in the classification of competitive vs non-competitive overlaps. 4. study the role of speakers and context (i.e., agents’ and customers’ speech) for conveying the information of competitiveness for each individual feature set and their combinations. 5. investigate the function of long silences towards the information flow in a dyadic conversation. The extracted turn-taking cues is then used to automatically predict the outcome of the conversation, which is modeled from continuous manifestations of emotion. The contributions include 1. modeling the state of the observed user satisfaction in terms of the final emotional manifestation of the customer (i.e., user). 2. analysis and modeling turn-taking properties to display how each turn type influence the user satisfaction. 3. study of how turn-taking behavior changes within each emotional state. Based on the studies conducted in this work, it is demonstrated that turn-taking behavior, specially competitiveness of overlaps, is more than just an organizational tool in daily human interactions. It represents the beneficial information and contains the power to predict the outcome of the conversation in terms of satisfaction vs not-satisfaction. Combining the turn-taking behavior and the outcome of the conversation, the final and resultant goal is to design a conversational profile for each speaker. Such profiled information not only facilitate domain experts but also would be useful to the call center agent in real time. These systems are fully automated and no human intervention is required. The findings are po- tentially relevant to the research of overlapping speech and automatic analysis of human-human and human-machine interactions

    Categories, words and rules in language acquisition

    Get PDF
    Acquiring language requires learning a set of words (i.e. the lexicon) and abstract rules that combine them to form sentences (i.e. syntax). In this thesis, we show that infants acquiring their mother tongue rely on different speech categories to extract: words and to abstract regularities. We address this issue with a study that investigates how young infants use consonants and vowels, showing that certain computations are tuned to one or the other of these speech categories..

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR
    corecore