106,467 research outputs found

    Semantic hierarchies for extracting, modeling, and connecting compliance requirements in information security control standards

    Get PDF
    Companies and government organizations are increasingly compelled, if not required by law, to ensure that their information systems will comply with various federal and industry regulatory standards, such as the NIST Special Publication on Security Controls for Federal Information Systems (NIST SP-800-53), or the Common Criteria (ISO 15408-2). Such organizations operate business or mission critical systems where a lack of or lapse in security protections translates to serious confidentiality, integrity, and availability risks that, if exploited, could result in information disclosure, loss of money, or, at worst, loss of life. To mitigate these risks and ensure that their information systems meet regulatory standards, organizations must be able to (a) contextualize regulatory documents in a way that extracts the relevant technical implications for their systems, (b) formally represent their systems and demonstrate that they meet the extracted requirements following an accreditation process, and (c) ensure that all third-party systems, which may exist outside of the information system enclave as web or cloud services also implement appropriate security measures consistent with organizational expectations. This paper introduces a step-wise process, based on semantic hierarchies, that systematically extracts relevant security requirements from control standards to build a certification baseline for organizations to use in conjunction with formal methods and service agreements for accreditation. The approach is demonstrated following a case study of all audit-related controls in the SP-800-53, ISO 15408-2, and related documents. Accuracy, applicability, consistency, and efficacy of the approach were evaluated using controlled qualitative and quantitative methods in two separate studies

    Toward Security Verification against Inference Attacks on Data Trees

    Full text link
    This paper describes our ongoing work on security verification against inference attacks on data trees. We focus on infinite secrecy against inference attacks, which means that attackers cannot narrow down the candidates for the value of the sensitive information to finite by available information to the attackers. Our purpose is to propose a model under which infinite secrecy is decidable. To be specific, we first propose tree transducers which are expressive enough to represent practical queries. Then, in order to represent attackers' knowledge, we propose data tree types such that type inference and inverse type inference on those tree transducers are possible with respect to data tree types, and infiniteness of data tree types is decidable.Comment: In Proceedings TTATT 2013, arXiv:1311.505

    Software Engineering Challenges for Investigating Cyber-Physical Incidents

    Get PDF
    Cyber-Physical Systems (CPS) are characterized by the interplay between digital and physical spaces. This characteristic has extended the attack surface that could be exploited by an offender to cause harm. An increasing number of cyber-physical incidents may occur depending on the configuration of the physical and digital spaces and their interplay. Traditional investigation processes are not adequate to investigate these incidents, as they may overlook the extended attack surface resulting from such interplay, leading to relevant evidence being missed and testing flawed hypotheses explaining the incidents. The software engineering research community can contribute to addressing this problem, by deploying existing formalisms to model digital and physical spaces, and using analysis techniques to reason about their interplay and evolution. In this paper, supported by a motivating example, we describe some emerging software engineering challenges to support investigations of cyber-physical incidents. We review and critique existing research proposed to address these challenges, and sketch an initial solution based on a meta-model to represent cyber-physical incidents and a representation of the topology of digital and physical spaces that supports reasoning about their interplay

    Security in online learning assessment towards an effective trustworthiness approach to support e-learning teams

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper proposes a trustworthiness model for the design of secure learning assessment in on-line collaborative learning groups. Although computer supported collaborative learning has been widely adopted in many educational institutions over the last decade, there exist still drawbacks which limit their potential in collaborative learning activities. Among these limitations, we investigate information security requirements in on-line assessment, (e-assessment), which can be developed in collaborative learning contexts. Despite information security enhancements have been developed in recent years, to the best of our knowledge, integrated and holistic security models have not been completely carried out yet. Even when security advanced methodologies and technologies are deployed in Learning Management Systems, too many types of vulnerabilities still remain opened and unsolved. Therefore, new models such as trustworthiness approaches can overcome these lacks and support e-assessment requirements for e-Learning. To this end, a trustworthiness model is designed in order to conduct the guidelines of a holistic security model for on-line collaborative learning through effective trustworthiness approaches. In addition, since users' trustworthiness analysis involves large amounts of ill-structured data, a parallel processing paradigm is proposed to build relevant information modeling trustworthiness levels for e-Learning.Peer ReviewedPostprint (author's final draft

    Opportunities in Software Engineering Research for Web API Consumption

    Full text link
    Nowadays, invoking third party code increasingly involves calling web services via their web APIs, as opposed to the more traditional scenario of downloading a library and invoking the library's API. However, there are also new challenges for developers calling these web APIs. In this paper, we highlight a broad set of these challenges and argue for resulting opportunities for software engineering research to support developers in consuming web APIs. We outline two specific research threads in this context: (1) web API specification curation, which enables us to know the signatures of web APIs, and (2) static analysis that is capable of extracting URLs, HTTP methods etc. of web API calls. Furthermore, we present new work on how we combine (1) and (2) to provide IDE support for application developers consuming web APIs. As web APIs are used broadly, research in supporting the consumption of web APIs offers exciting opportunities.Comment: Erik Wittern and Annie Ying are both first author
    • …
    corecore