3,550 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Rule Extraction and Insertion to Improve the Performance of a Dynamic Cell Structure Neural Network

    Get PDF
    Artificial Neural Networks are extremely useful machine learning tools. They are used for many purposes, such as prediction, classification, pattern recognition, etc. Although neural networks have been used for decades, they are still often not completely understood or trusted, especially in safety and mission critical situations. Typically, neural networks are trained on data sets that are representative of what needs to be learned. Sometimes training sets are constructed in order to train the neural network in a certain way, in order to embed appropriate knowledge. The purpose of this research is to determine if there is another method that can be used to embed specific knowledge in a neural network before training and if this improves the performance of a neural network. This research develops and tests a new method of embedding pre-knowledge into the Dynamic Cell Structure (DCS) neural network. The DCS is a type of self-organizing map neural network that has been used for many purposes, including classification. In the research presented here, the method used for embedding pre-knowledge into the neural network is to start by converting the knowledge to a set of IF/THEN rules, that can be easily understood and/or validated by a human expert. Once the rules are constructed and validated, then they are converted to a beginning neural network structure. This allows pre-knowledge to be embedded before training the neural network. This conversion and embedding process is called Rule Insertion. In order to determine whether this process improves performance, the neural network was trained with and without pre-knowledge embedded. After the training, the neural network structure was again converted to rules, Rule Extraction, and then the neural network accuracy and the rule accuracy were computed. Also, the agreement between the neural network and the extracted rules was computed. The findings of this research show that using Rule Insertion to embed pre-knowledge into a DCS neural network can increase the accuracy of the neural network. An expert can create the rules to be embedded and can also examine and validate the rules extracted to give more confidence in what the neural network has learned during training. The extracted rules are also a refinement of the inserted rules, meaning the neural network was able to improve upon the expert knowledge based on the data presented

    Soft Computing Techniques and Their Applications in Intel-ligent Industrial Control Systems: A Survey

    Get PDF
    Soft computing involves a series of methods that are compatible with imprecise information and complex human cognition. In the face of industrial control problems, soft computing techniques show strong intelligence, robustness and cost-effectiveness. This study dedicates to providing a survey on soft computing techniques and their applications in industrial control systems. The methodologies of soft computing are mainly classified in terms of fuzzy logic, neural computing, and genetic algorithms. The challenges surrounding modern industrial control systems are summarized based on the difficulties in information acquisition, the difficulties in modeling control rules, the difficulties in control system optimization, and the requirements for robustness. Then, this study reviews soft-computing-related achievements that have been developed to tackle these challenges. Afterwards, we present a retrospect of practical industrial control applications in the fields including transportation, intelligent machines, process industry as well as energy engineering. Finally, future research directions are discussed from different perspectives. This study demonstrates that soft computing methods can endow industry control processes with many merits, thus having great application potential. It is hoped that this survey can serve as a reference and provide convenience for scholars and practitioners in the fields of industrial control and computer science

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    A Semantic Information Management Approach for Improving Bridge Maintenance based on Advanced Constraint Management

    Get PDF
    Bridge rehabilitation projects are important for transportation infrastructures. This research proposes a novel information management approach based on state-of-the-art deep learning models and ontologies. The approach can automatically extract, integrate, complete, and search for project knowledge buried in unstructured text documents. The approach on the one hand facilitates implementation of modern management approaches, i.e., advanced working packaging to delivery success bridge rehabilitation projects, on the other hand improves information management practices in the construction industry
    • …
    corecore