1,058 research outputs found

    Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked to fluctuations in expectation, attention, arousal, and task strategy. Therefore, a method that permits the extraction of the oscillatory signal on a single-trial basis is important for the study of subtle brain dynamics, which can be used as probes to study neurophysiology in normal brain and pathophysiology in the diseased.</p> <p>Methods</p> <p>This paper presents an empirical mode decomposition (EMD)-based spatiotemporal approach to extract neural oscillatory activities from multi-channel electroencephalograph (EEG) data. The efficacy of this approach manifests in extracting single-trial post-movement beta activities when performing a right index-finger lifting task. In each single trial, an EEG epoch recorded at the channel of interest (CI) was first separated into a number of intrinsic mode functions (IMFs). Sensorimotor-related oscillatory activities were reconstructed from sensorimotor-related IMFs chosen by a spatial map matching process. Post-movement beta activities were acquired by band-pass filtering the sensorimotor-related oscillatory activities within a trial-specific beta band. Signal envelopes of post-movement beta activities were detected using amplitude modulation (AM) method to obtain post-movement beta event-related synchronization (PM-bERS). The maximum amplitude in the PM-bERS within the post-movement period was subtracted by the mean amplitude of the reference period to find the single-trial beta rebound (BR).</p> <p>Results</p> <p>The results showed single-trial BRs computed by the current method were significantly higher than those obtained from conventional average method (<it>P </it>< 0.01; matched-pair Wilcoxon test). The proposed method provides high signal-to-noise ratio (SNR) through an EMD-based decomposition and reconstruction process, which enables event-related oscillatory activities to be examined on a single-trial basis.</p> <p>Conclusions</p> <p>The EMD-based method is effective for artefact removal and extracting reliable neural features of non-phase-locked oscillatory activities in multi-channel EEG data. The high extraction rate of the proposed method enables the trial-by-trial variability of oscillatory activities can be examined, which provide a possibility for future profound study of subtle brain dynamics.</p

    Noninvasive Neuroprosthetic Control of Grasping by Amputees

    Get PDF
    Smooth coordination and fine temporal control of muscles by the brain allows us to effortlessly pre-shape our hand to grasp different objects. Correlates of motor control for grasping have been found across wide-spread cortical areas, with diverse signal features. These signals have been harnessed by implanting intracortical electrodes and used to control the motion of robotic hands by tetraplegics, using algorithms called brain-machine interfaces (BMIs). Signatures of motor control signal encoding mechanisms of the brain in macro-scale signals such as electroencephalography (EEG) are unknown, and could potentially be used to develop noninvasive brain-machine interfaces. Here we show that a) low frequency (0.1 – 1 Hz) time domain EEG contains information about grasp pre-shaping in able-bodies individuals, and b) This information can be used to control pre-shaping motion of a robotic hand by amputees. In the first study, we recorded simultaneous EEG and hand kinematics as 5 able-bodies individuals grasped various objects. Linear decoders using low delta band EEG amplitudes accurately predicted hand pre-shaping kinematics during grasping. Correlation coefficient between predicted and actual kinematics was r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05 for the first 3 synergies. In the second study, two transradial amputees (A1 and A2) controlled a prosthetic hand to grasp two objects using a closed-loop BMI with low delta band EEG. This study was conducted longitudinally in 12 sessions spread over 38 days. A1 achieved a 63% success rate, with 11 sessions significantly above chance. A2 achieved a 32% success rate, with 2 sessions significantly above chance. Previous methods of EEG-based BMIs used frequency domain features, and were thought to have a low signal-to-noise ratio making them unsuitable for control of dexterous tasks like grasping. Our results demonstrate that time-domain EEG contains information about grasp pre-shaping, which can be harnessed for neuroprosthetic control.Electrical and Computer Engineering, Department o

    Network-based brain computer interfaces: principles and applications

    Full text link
    Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user s mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability

    Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition from Human STN

    Get PDF
    Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. This thesis proposes novel detection and classification techniques for behavior recognition based on deep brain LFP. Behavior detection from such signals is the vital step in developing the next generation of closed-loop DBS devices. LFP recordings from 13 subjects are utilized in this study to design and evaluate our method. Recordings were performed during the surgery and the subjects were asked to perform various behavioral tasks. Various techniques are used understand how the behaviors modulate the STN. One method studies the time-frequency patterns in the STN LFP during the tasks. Another method measures the temporal inter-hemispheric connectivity of the STN as well as the connectivity between STN and Pre-frontal Cortex (PFC). Experimental results demonstrate that different behaviors create different modulation patterns in STN and it’s connectivity. We use these patterns as features to classify behaviors. A method for single trial recognition of the patient’s current task is proposed. This method uses wavelet coefficients as features and support vector machine (SVM) as the classifier for recognition of a selection of behaviors: speech, motor, and random. The proposed method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks. As the next step, a practical behavior detection method which asynchronously detects behaviors is proposed. This method does not use any prior knowledge of behavior onsets and is capable of asynchronously detect the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity and to detect the finger movements. Our experimental results using STN LFP recorded from eight patients with PD demonstrate this is a promising approach for behavior detection and developing novel closed-loop DBS systems

    Decoding of walking kinematics from non-invasively acquired electroencephalographic signals in stroke patients

    Get PDF
    Our group has recently shown the feasibility of decoding kinematics of controlled walking from the lower frequency range of electroencephalographic (EEG) signals during a precision walking task. Here, we turn our attention to stroke survivors who have had lesions resulting in hemiparetic gait. We recorded the EEG of stroke recovery patients during a precision treadmill walking task while tracking bilaterally the kinematics of the hips, knees, and ankles. In offline analyses, we applied a Wiener Filter and two unscented Kalman filters of 1st and 10th orders to predict estimates of the kinematic parameters from scalp EEG. Decoding accuracies from four patients who have had cortical and subcortical strokes were comparable with previous studies in healthy subjects. With improved decoding of EEG signals from damaged brains, we hope we can soon correlate activity to more intentional and normal-form walking that can guide users of a powered lower-body prosthetic or exoskeleton

    Signal processing algorithms for brain computer interfacing

    Get PDF
    A brain computer interface (BCI) allows the user to communicate with a computer using only brain signals. In this way, the conventional neural pathways of peripheral nerves and muscles are bypassed, thereby enabling control of a computer by a person with no motor control. The brain signals, known as electroencephalographs (EEGs), are recorded by electrodes placed on the surface of the scalp. A requirement for a successful BCI is that interfering artifacts are removed from the EEGs, so that thereby the important cognitive information is revealed. Two systems based on second order blind source separation (BSS) are therefore proposed. The first system, is based on developing a gradient based BSS algorithm, within which a constraint is incorporated such that the effect of eye blinking artifacts are mitigated from the constituent independent components (ICs). The second method is based on reconstructing the EEGs such that the effect of eye blinking artifacts are removed. The EEGs are separated using an unconstrained BSS algorithm, based on the principles of second order blind identification. Certain characteristics describing eye blinking artifacts are used to identify the related ICs. Then the remaining ICs are used to reconstruct the artifact free EEGs. Both methods yield significantly better results than standard techniques. The degree to which the artifacts are removed is shown and compared with standard methods, both subjectively and objectively. The proposed BCI systems are based on extracting the sources related to finger movement and tracking the movement of the corresponding signal sources. The first proposed system explicitly localises the sources over successive temporal windows of ICs using the least squares (LS) method and characterises the trajectories of the sources. A constrained BSS algorithm is then developed to separate the EEGs while mitigating the eye blinking artifacts. Another approach is based on inferring causal relationships between electrode signals. Directed transfer functions (DTFs) are also applied to short temporal windows of EEGs, from which a time-frequency map of causality is constructed. Additionally, the distribution of beta band power for the IC related to finger movement is combined with the DTF approach to form part of a robust classification system. Finally, a new modality for BCI is introduced based on space-time-frequency masking. Here the sources are assumed to be disjoint in space, time and frequency. The method is based on multi-way analysis of the EEGs and extraction of components related to finger movements. The components are localised in space-time-frequency and compared with the original EEGs in order to quantify the motion of the extracted component
    corecore