1,939 research outputs found

    Harnessing Machine Learning to Improve Healthcare Monitoring with FAERS

    Get PDF
    This research study investigates the potential of machine learning techniques to improve healthcare monitoring through the utilization of data from the FDA Adverse Event Reporting System (FAERS). The objective is to explore specific applications of machine learning in healthcare monitoring with FAERS and highlight their findings. The study reveals several significant ways in which machine learning can contribute to enhancing healthcare monitoring using FAERS.Machine learning algorithms can detect potential safety signals at an early stage by analyzing FAERS data. By employing anomaly detection and temporal pattern analysis techniques, these models can identify emerging safety concerns that were previously unknown or underreported. This early detection enables timely action to mitigate risks associated with medications or medical products.Machine learning models can assist in pharmacovigilance triage, addressing the challenge posed by the large number of adverse event reports within FAERS. By developing ranking and classification models, adverse events can be prioritized based on severity, novelty, or potential impact. This automation of the triage process enables pharmacovigilance teams to efficiently identify and investigate critical safety concerns.Machine learning models can automate the classification and coding of adverse events, which are often present in unstructured text within FAERS reports. Through the application of Natural Language Processing (NLP) techniques, such as named entity recognition and text classification, relevant information can be extracted, enhancing the efficiency and accuracy of adverse event coding.Machine learning algorithms can refine and validate signals generated from FAERS data by incorporating additional data sources, such as electronic health records, social media, or clinical trials data. This integration provides a more comprehensive understanding of potential risks and helps filter out false positives, facilitating the identification of signals requiring further investigation.Machine learning enables real-time surveillance of FAERS data, allowing for the identification of safety concerns as they occur. Continuous monitoring and real-time analysis of incoming reports enable machine learning models to trigger alerts or notifications to relevant stakeholders, promoting timely intervention to minimize patient harm.The study demonstrates the use of machine learning models to conduct comparative safety analyses by combining FAERS data with other healthcare databases. These models assist in identifying safety differences between medications, patient populations, or dosing regimens, enabling healthcare providers and regulators to make informed decisions regarding treatment choices.While machine learning is a powerful tool in healthcare monitoring, its implementation should be complemented by human expertise and domain knowledge. The interpretation and validation of results generated by machine learning models necessitate the involvement of healthcare professionals and pharmacovigilance experts to ensure accurate and meaningful insights.This research study illustrates the diverse applications of machine learning in improving healthcare monitoring using FAERS data. The findings highlight the potential of machine learning in early safety signal detection, pharmacovigilance triage, adverse event classification and coding, signal refinement and validation, real-time surveillance and alerting, and comparative safety analysis. The study emphasizes the importance of combining machine learning with human expertise to achieve effective and reliable healthcare monitoring

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    MC-DRE: Multi-Aspect Cross Integration for Drug Event/Entity Extraction

    Full text link
    Extracting meaningful drug-related information chunks, such as adverse drug events (ADE), is crucial for preventing morbidity and saving many lives. Most ADEs are reported via an unstructured conversation with the medical context, so applying a general entity recognition approach is not sufficient enough. In this paper, we propose a new multi-aspect cross-integration framework for drug entity/event detection by capturing and aligning different context/language/knowledge properties from drug-related documents. We first construct multi-aspect encoders to describe semantic, syntactic, and medical document contextual information by conducting those slot tagging tasks, main drug entity/event detection, part-of-speech tagging, and general medical named entity recognition. Then, each encoder conducts cross-integration with other contextual information in three ways: the key-value cross, attention cross, and feedforward cross, so the multi-encoders are integrated in depth. Our model outperforms all SOTA on two widely used tasks, flat entity detection and discontinuous event extraction.Comment: Accepted at CIKM 202

    Distilling Large Language Models for Biomedical Knowledge Extraction: A Case Study on Adverse Drug Events

    Full text link
    Large language models (LLMs), such as GPT-4, have demonstrated remarkable capabilities across a wide range of tasks, including health applications. In this paper, we study how LLMs can be used to scale biomedical knowledge curation. We find that while LLMs already possess decent competency in structuring biomedical text, by distillation into a task-specific student model through self-supervised learning, substantial gains can be attained over out-of-box LLMs, with additional advantages such as cost, efficiency, and white-box model access. We conduct a case study on adverse drug event (ADE) extraction, which is an important area for improving care. On standard ADE extraction evaluation, a GPT-3.5 distilled PubMedBERT model attained comparable accuracy as supervised state-of-the-art models without using any labeled data. Despite being over 1,000 times smaller, the distilled model outperformed its teacher GPT-3.5 by over 6 absolute points in F1 and GPT-4 by over 5 absolute points. Ablation studies on distillation model choice (e.g., PubMedBERT vs BioGPT) and ADE extraction architecture shed light on best practice for biomedical knowledge extraction. Similar gains were attained by distillation for other standard biomedical knowledge extraction tasks such as gene-disease associations and protected health information, further illustrating the promise of this approach

    BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph Construction and Analysis

    Full text link
    Background : Knowledge is evolving over time, often as a result of new discoveries or changes in the adopted methods of reasoning. Also, new facts or evidence may become available, leading to new understandings of complex phenomena. This is particularly true in the biomedical field, where scientists and physicians are constantly striving to find new methods of diagnosis, treatment and eventually cure. Knowledge Graphs (KGs) offer a real way of organizing and retrieving the massive and growing amount of biomedical knowledge. Objective : We propose an end-to-end approach for knowledge extraction and analysis from biomedical clinical notes using the Bidirectional Encoder Representations from Transformers (BERT) model and Conditional Random Field (CRF) layer. Methods : The approach is based on knowledge graphs, which can effectively process abstract biomedical concepts such as relationships and interactions between medical entities. Besides offering an intuitive way to visualize these concepts, KGs can solve more complex knowledge retrieval problems by simplifying them into simpler representations or by transforming the problems into representations from different perspectives. We created a biomedical Knowledge Graph using using Natural Language Processing models for named entity recognition and relation extraction. The generated biomedical knowledge graphs (KGs) are then used for question answering. Results : The proposed framework can successfully extract relevant structured information with high accuracy (90.7% for Named-entity recognition (NER), 88% for relation extraction (RE)), according to experimental findings based on real-world 505 patient biomedical unstructured clinical notes. Conclusions : In this paper, we propose a novel end-to-end system for the construction of a biomedical knowledge graph from clinical textual using a variation of BERT models

    ์•ฝ๋ฌผ ๊ฐ์‹œ๋ฅผ ์œ„ํ•œ ๋น„์ •ํ˜• ํ…์ŠคํŠธ ๋‚ด ์ž„์ƒ ์ •๋ณด ์ถ”์ถœ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์‘์šฉ๋ฐ”์ด์˜ค๊ณตํ•™๊ณผ, 2023. 2. ์ดํ˜•๊ธฐ.Pharmacovigilance is a scientific activity to detect, evaluate and understand the occurrence of adverse drug events or other problems related to drug safety. However, concerns have been raised over the quality of drug safety information for pharmacovigilance, and there is also a need to secure a new data source to acquire drug safety information. On the other hand, the rise of pre-trained language models based on a transformer architecture has accelerated the application of natural language processing (NLP) techniques in diverse domains. In this context, I tried to define two problems in pharmacovigilance as an NLP task and provide baseline models for the defined tasks: 1) extracting comprehensive drug safety information from adverse drug events narratives reported through a spontaneous reporting system (SRS) and 2) extracting drug-food interaction information from abstracts of biomedical articles. I developed annotation guidelines and performed manual annotation, demonstrating that strong NLP models can be trained to extracted clinical information from unstructrued free-texts by fine-tuning transformer-based language models on a high-quality annotated corpus. Finally, I discuss issues to consider when when developing annotation guidelines for extracting clinical information related to pharmacovigilance. The annotated corpora and the NLP models in this dissertation can streamline pharmacovigilance activities by enhancing the data quality of reported drug safety information and expanding the data sources.์•ฝ๋ฌผ ๊ฐ์‹œ๋Š” ์•ฝ๋ฌผ ๋ถ€์ž‘์šฉ ๋˜๋Š” ์•ฝ๋ฌผ ์•ˆ์ „์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์˜ ๋ฐœ์ƒ์„ ๊ฐ์ง€, ํ‰๊ฐ€ ๋ฐ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๊ณผํ•™์  ํ™œ๋™์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•ฝ๋ฌผ ๊ฐ์‹œ์— ์‚ฌ์šฉ๋˜๋Š” ์˜์•ฝํ’ˆ ์•ˆ์ „์„ฑ ์ •๋ณด์˜ ๋ณด๊ณ  ํ’ˆ์งˆ์— ๋Œ€ํ•œ ์šฐ๋ ค๊ฐ€ ๊พธ์ค€ํžˆ ์ œ๊ธฐ๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๋ณด๊ณ  ํ’ˆ์งˆ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•ˆ์ „์„ฑ ์ •๋ณด๋ฅผ ํ™•๋ณดํ•  ์ƒˆ๋กœ์šด ์ž๋ฃŒ์›์ด ํ•„์š”ํ•˜๋‹ค. ํ•œํŽธ ํŠธ๋žœ์Šคํฌ๋จธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ์ „ํ›ˆ๋ จ ์–ธ์–ด๋ชจ๋ธ์ด ๋“ฑ์žฅํ•˜๋ฉด์„œ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์—์„œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ์ ์šฉ์ด ๊ฐ€์†ํ™”๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋งฅ๋ฝ์—์„œ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์•ฝ๋ฌผ ๊ฐ์‹œ๋ฅผ ์œ„ํ•œ ๋‹ค์Œ 2๊ฐ€์ง€ ์ •๋ณด ์ถ”์ถœ ๋ฌธ์ œ๋ฅผ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ ํ˜•ํƒœ๋กœ ์ •์˜ํ•˜๊ณ  ๊ด€๋ จ ๊ธฐ์ค€ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค: 1) ์ˆ˜๋™์  ์•ฝ๋ฌผ ๊ฐ์‹œ ์ฒด๊ณ„์— ๋ณด๊ณ ๋œ ์ด์ƒ์‚ฌ๋ก€ ์„œ์ˆ ์ž๋ฃŒ์—์„œ ํฌ๊ด„์ ์ธ ์•ฝ๋ฌผ ์•ˆ์ „์„ฑ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•œ๋‹ค. 2) ์˜๋ฌธ ์˜์•ฝํ•™ ๋…ผ๋ฌธ ์ดˆ๋ก์—์„œ ์•ฝ๋ฌผ-์‹ํ’ˆ ์ƒํ˜ธ์ž‘์šฉ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์•ˆ์ „์„ฑ ์ •๋ณด ์ถ”์ถœ์„ ์œ„ํ•œ ์–ด๋…ธํ…Œ์ด์…˜ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ˆ˜์ž‘์—…์œผ๋กœ ์–ด๋…ธํ…Œ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณ ํ’ˆ์งˆ์˜ ์ž์—ฐ์–ด ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ์ „ํ•™์Šต ์–ธ์–ด๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•จ์œผ๋กœ์จ ๋น„์ •ํ˜• ํ…์ŠคํŠธ์—์„œ ์ž„์ƒ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ชจ๋ธ ๊ฐœ๋ฐœ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์•ฝ๋ฌผ๊ฐ์‹œ์™€ ๊ด€๋ จ๋œ์ž„์ƒ ์ •๋ณด ์ถ”์ถœ์„ ์œ„ํ•œ ์–ด๋…ธํ…Œ์ด์…˜ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ๊ฐœ๋ฐœํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผ ํ•  ์ฃผ์˜ ์‚ฌํ•ญ์— ๋Œ€ํ•ด ๋…ผ์˜ํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•œ ์ž์—ฐ์–ด ํ•™์Šต๋ฐ์ดํ„ฐ์™€ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ชจ๋ธ์€ ์•ฝ๋ฌผ ์•ˆ์ „์„ฑ ์ •๋ณด์˜ ๋ณด๊ณ  ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ž๋ฃŒ์›์„ ํ™•์žฅํ•˜์—ฌ ์•ฝ๋ฌผ ๊ฐ์‹œ ํ™œ๋™์„ ๋ณด์กฐํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1 1 1.1 Contributions of this dissertation 2 1.2 Overview of this dissertation 2 1.3 Other works 3 Chapter 2 4 2.1 Pharmacovigilance 4 2.2 Biomedical NLP for pharmacovigilance 6 2.2.1 Pre-trained language models 6 2.2.2 Corpora to extract clinical information for pharmacovigilance 9 Chapter 3 11 3.1 Motivation 12 3.2 Proposed Methods 14 3.2.1 Data source and text corpus 15 3.2.2 Annotation of ADE narratives 16 3.2.3 Quality control of annotation 17 3.2.4 Pretraining KAERS-BERT 18 3.2.6 Named entity recognition 20 3.2.7 Entity label classification and sentence extraction 21 3.2.8 Relation extraction 21 3.2.9 Model evaluation 22 3.2.10 Ablation experiment 23 3.3 Results 24 3.3.1 Annotated ICSRs 24 3.3.2 Corpus statistics 26 3.3.3 Performance of NLP models to extract drug safety information 28 3.3.4 Ablation experiment 31 3.4 Discussion 33 3.5 Conclusion 38 Chapter 4 39 4.1 Motivation 39 4.2 Proposed Methods 43 4.2.1 Data source 44 4.2.2 Annotation 45 4.2.3 Quality control of annotation 49 4.2.4 Baseline model development 49 4.3 Results 50 4.3.1 Corpus statistics 50 4.3.2 Annotation Quality 54 4.3.3 Performance of baseline models 55 4.3.4 Qualitative error analysis 56 4.4 Discussion 59 4.5 Conclusion 63 Chapter 5 64 5.1 Issues around defining a word entity 64 5.2 Issues around defining a relation between word entities 66 5.3 Issues around defining entity labels 68 5.4 Issues around selecting and preprocessing annotated documents 68 Chapter 6 71 6.1 Dissertation summary 71 6.2 Limitation and future works 72 6.2.1 Development of end-to-end information extraction models from free-texts to database based on existing structured information 72 6.2.2 Application of in-context learning framework in clinical information extraction 74 Chapter 7 76 7.1 Annotation Guideline for "Extraction of Comprehensive Drug Safety Information from Adverse Event Narratives Reported through Spontaneous Reporting System" 76 7.2 Annotation Guideline for "Extraction of Drug-Food Interactions from the Abtracts of Biomedical Articles" 100๋ฐ•
    • โ€ฆ
    corecore