7,282 research outputs found

    Getting Relational Database from Legacy Data-MDRE Approach

    Get PDF
    The previous management information systems turning on traditional mainframe environment are often written in COBOL and store their data in files; they are usually large and complex and known as legacy systems. These legacy systems need to be maintained and evolved due to several causes, including correction of anomalies, requirements change, management rules change, new reorganization, etc. But, the maintenance of legacy systems becomes over years extremely complex and highly expensive, In this case, a new or an improved system must replace the previous one. However, replacing those systems completely from scratch is also very expensive and it represents a huge risk. Nevertheless, they should be evolved by profiting from the valuable knowledge embedded in them. This paper proposes a reverse engineering process based on Model Driven engineering that presents a solution to provide a normalized relational database which includes the integrity constraints extracted from legacy data. A CASE tool CETL: (COBOL Extract Transform Load) is developed to support the proposal. Keywords: legacy data, reverse engineering, model driven engineering, COBOL metamodel, domain class diagram, relational database

    Business rules based legacy system evolution towards service-oriented architecture.

    Get PDF
    Enterprises can be empowered to live up to the potential of becoming dynamic, agile and real-time. Service orientation is emerging from the amalgamation of a number of key business, technology and cultural developments. Three essential trends in particular are coming together to create a new revolutionary breed of enterprise, the service-oriented enterprise (SOE): (1) the continuous performance management of the enterprise; (2) the emergence of business process management; and (3) advances in the standards-based service-oriented infrastructures. This thesis focuses on this emerging three-layered architecture that builds on a service-oriented architecture framework, with a process layer that brings technology and business together, and a corporate performance layer that continually monitors and improves the performance indicators of global enterprises provides a novel framework for the business context in which to apply the important technical idea of service orientation and moves it from being an interesting tool for engineers to a vehicle for business managers to fundamentally improve their businesses

    REVERSE ENGINEERING BASED APPROACH FOR TRANSFERRING LEGACY RELATIONAL DATABASES INTO XML

    Get PDF
    XML (extensible Markup Language) has emerged, and. is being gradually accepted as the standard for data interchange over the Internet. Since most data is currently stored in relational database systems, the problem of converting relational data into XML assumes special significance. Many researchers have already done some accomplishments in this direction. They mainly focus on finding XML schema (e.g., DTD, XML-Schema, and RELAX) that best describes a given relational database with a corresponding well-defined database catalog that contains all information about tables, keys and constraints. However, not all existing databases can provide the required catalog information. Therefore, these applications do not work well for legacy relational database systems that were developed following the logical relational database design methodology, without being based on any commercial DBMS, and hence do not provide well-defined metadata files describing the database structure and constraints. In this paper, we address this issue by first applying the reverse engineering approach described in [2] to extract the ER (Extended Entity Relationship) model from a legacy relational database, then convert the ER to XML Schema. The proposed approach is capable of reflecting the relational schema flexibility into XML schema by considering the mapping of binary and nary relationships. We have implemented a first prototype and the initial experimental results are very encouraging, demonstrating the applicability and effectiveness of the proposed approach

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Preface of the Proceedings of WRAP 2004

    Get PDF

    Model inference for spreadsheets

    Get PDF
    Many errors in spreadsheet formulas can be avoided if spreadsheets are built automati- cally from higher-level models that can encode and enforce consistency constraints in the generated spreadsheets. Employing this strategy for legacy spreadsheets is dificult, because the model has to be reverse engineered from an existing spreadsheet and existing data must be transferred into the new model-generated spreadsheet. We have developed and implemented a technique that automatically infers relational schemas from spreadsheets. This technique uses particularities from the spreadsheet realm to create better schemas. We have evaluated this technique in two ways: First, we have demonstrated its appli- cability by using it on a set of real-world spreadsheets. Second, we have run an empirical study with users. The study has shown that the results produced by our technique are comparable to the ones developed by experts starting from the same (legacy) spreadsheet data. Although relational schemas are very useful to model data, they do not t well spreadsheets as they do not allow to express layout. Thus, we have also introduced a mapping between relational schemas and ClassSheets. A ClassSheet controls further changes to the spreadsheet and safeguards it against a large class of formula errors. The developed tool is a contribution to spreadsheet (reverse) engineering, because it lls an important gap and allows a promising design method (ClassSheets) to be applied to a huge collection of legacy spreadsheets with minimal effort.We would like to thank Orlando Belo for his help on running and analyzing the empirical study. We would also like to thank Paulo Azevedo for his help in conducting the statistical analysis of our empirical study. We would also like to thank the anonymous reviewers for their suggestions which helped us to improve the paper. This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-010048. The first author was also supported by FCT grant SFRH/BPD/73358/2010

    Automatically inferring ClassSheet models from spreadsheets

    Get PDF
    Many errors in spreadsheet formulas can be avoided if spreadsheets are built automatically from higher-level models that can encode and enforce consistency constraints. However, designing such models is time consuming and requires expertise beyond the knowledge to work with spreadsheets. Legacy spreadsheets pose a particular challenge to the approach of controlling spreadsheet evolution through higher-level models, because the need for a model might be overshadowed by two problems: (A) The benefit of creating a spreadsheet is lacking since the legacy spreadsheet already exists, and (B) existing data must be transferred into the new model-generated spreadsheet.To address these problems and to support the modeldriven spreadsheet engineering approach, we have developed a tool that can automatically infer ClassSheet models from spreadsheets. To this end, we have adapted a method to infer entity/relationship models from relational database to the spreadsheets/ClassSheets realm. We have implemented our techniques in the HAEXCEL framework and integrated it with the ViTSL/Gencel spreadsheet generator, which allows the automatic generation of refactored spreadsheets from the inferred ClassSheet model. The resulting spreadsheet guides further changes and provably safeguards the spreadsheet against a large class of formula errors. The developed tool is a significant contribution to spreadsheet (reverse) engineering, because it fills an important gap and allows a promising design method (ClassSheets) to be applied to a huge collection of legacy spreadsheets with minimal effort.(undefined
    • 

    corecore