1,248 research outputs found

    Classification Based Analysis on Cancer Datasets Using Predictor Measures

    Get PDF
    Cancer is a life-threatening disease. Probably the most effective way to reduce cancer deaths is to detect it earlier. Diagnosing the disease earlier needs an accurate and reliable procedure which could be used by physicians to distinguish between cancer from malignant ones without leaving for surgical biopsy. Data mining offers solution for such types of the problems where a large quantity of information about patients and their conditions are stored in clinical database. This paper focuses on prediction of some such diseases like Leukemia and Breast cancers. Naïve Bayes and SVM prediction models are built for the prediction and classification. The performance of the proposed models produced significant results of above 96% while compared with other models in terms of accuracy, computational time and convergence. Keywords: Prediction, Data Mining, Diagnosis, Cancer, Naïve Bayes, Supper Vector machine (SVM). DOI: 10.7176/CEIS/10-6-05 Publication date:July 31st 201

    Data Mining Techniques in the Diagnosis of Tuberculosis

    Get PDF

    Machine Learning Approach for Cancer Entities Association and Classification

    Full text link
    According to the World Health Organization (WHO), cancer is the second leading cause of death globally. Scientific research on different types of cancers grows at an ever-increasing rate, publishing large volumes of research articles every year. The insight information and the knowledge of the drug, diagnostics, risk, symptoms, treatments, etc., related to genes are significant factors that help explore and advance the cancer research progression. Manual screening of such a large volume of articles is very laborious and time-consuming to formulate any hypothesis. The study uses the two most non-trivial NLP, Natural Language Processing functions, Entity Recognition, and text classification to discover knowledge from biomedical literature. Named Entity Recognition (NER) recognizes and extracts the predefined entities related to cancer from unstructured text with the support of a user-friendly interface and built-in dictionaries. Text classification helps to explore the insights into the text and simplifies data categorization, querying, and article screening. Machine learning classifiers are also used to build the classification model and Structured Query Languages (SQL) is used to identify the hidden relations that may lead to significant predictions

    Automatic Image Detection of Halloysite Clay Nanotubes as a Future Ultrasound Theranostic Agent for Tumoral Cell Targeting and Treatment

    Get PDF
    none7Halloysite clay Nanotubes (HNTs) are nanomaterials composed of double layered aluminosilicate minerals with a hollow tubular structure in the submicron range. They are characterized by a wide range of applications in anticancer therapy as agent delivery. In this work we aim to investigate the automatic detection features of HNTs through advanced quantitative ultrasound imaging employing different concentrations (3-5 mg/mL) at clinical conventional frequency, i.e. 7 MHz. Different tissue mimicking samples of HNT containing agarose gel were imaged through a commercially available echographic system, that was opportunely combined with ultrasound signal analysis research platform for extracting the raw ultrasound radiofrequency (RF) signals. Acquired data were stored and analyzed by means of an in-house developed algorithm based on wavelet decomposition, in order to identify the specific spectrum contribution of the HNTs and generate corresponding image mapping. Sensitivity and specificity of the HNT detection were quantified. Average specificity (94.36%) was very high with reduced dependency on HNT concentration, while sensitivity showed a proportional increase with concentration with an average of 46.78%. However, automatic detection performances are currently under investigation for further improvement taking into account image enhancement and biocompatibility issues.openCasciaro Sergio; Soloperto Giulia; Conversano Francesco; Casciaro Ernesto; Greco Antonio; Leporatti Stefano; Lay-Ekuakille Aime; Gigli GiuseppeCasciaro, Sergio; Soloperto, Giulia; Conversano, Francesco; Casciaro, Ernesto; Greco, Antonio; Leporatti, Stefano; LAY EKUAKILLE, Aime; Gigli, Giusepp

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Granular Support Vector Machines Based on Granular Computing, Soft Computing and Statistical Learning

    Get PDF
    With emergence of biomedical informatics, Web intelligence, and E-business, new challenges are coming for knowledge discovery and data mining modeling problems. In this dissertation work, a framework named Granular Support Vector Machines (GSVM) is proposed to systematically and formally combine statistical learning theory, granular computing theory and soft computing theory to address challenging predictive data modeling problems effectively and/or efficiently, with specific focus on binary classification problems. In general, GSVM works in 3 steps. Step 1 is granulation to build a sequence of information granules from the original dataset or from the original feature space. Step 2 is modeling Support Vector Machines (SVM) in some of these information granules when necessary. Finally, step 3 is aggregation to consolidate information in these granules at suitable abstract level. A good granulation method to find suitable granules is crucial for modeling a good GSVM. Under this framework, many different granulation algorithms including the GSVM-CMW (cumulative margin width) algorithm, the GSVM-AR (association rule mining) algorithm, a family of GSVM-RFE (recursive feature elimination) algorithms, the GSVM-DC (data cleaning) algorithm and the GSVM-RU (repetitive undersampling) algorithm are designed for binary classification problems with different characteristics. The empirical studies in biomedical domain and many other application domains demonstrate that the framework is promising. As a preliminary step, this dissertation work will be extended in the future to build a Granular Computing based Predictive Data Modeling framework (GrC-PDM) with which we can create hybrid adaptive intelligent data mining systems for high quality prediction

    DES-mutation : system for exploring links of mutations and diseases

    Get PDF
    During cellular division DNA replicates and this process is the basis for passing genetic information to the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, that is, one with mutations. The collection of all such mutations in the DNA copy of an organism makes it unique and determines the organism's phenotype. However, mutations are often the cause of diseases. Thus, it is useful to have the capability to explore links between mutations and disease. We approached this problem by analyzing a vast amount of published information linking mutations to disease states. Based on such information, we developed the DES-Mutation knowledgebase which allows for exploration of not only mutation-disease links, but also links between mutations and concepts from 27 topic-specific dictionaries such as human genes/proteins, toxins, pathogens, etc. This allows for a more detailed insight into mutation-disease links and context. On a sample of 600 mutation-disease associations predicted and curated, our system achieves precision of 72.83%. To demonstrate the utility of DES-Mutation, we provide case studies related to known or potentially novel information involving disease mutations. To our knowledge, this is the first mutation-disease knowledgebase dedicated to the exploration of this topic through text-mining and data-mining of different mutation types and their associations with terms from multiple thematic dictionaries
    corecore