146 research outputs found

    Doctor of Philosophy

    Get PDF
    DissertationHealth information technology (HIT) in conjunction with quality improvement (QI) methodologies can promote higher quality care at lower costs. Unfortunately, most inpatient hospital settings have been slow to adopt HIT and QI methodologies. Successful adoption requires close attention to workflow. Workflow is the sequence of tasks, processes, and the set of people or resources needed for those tasks that are necessary to accomplish a given goal. Assessing the impact on workflow is an important component of determining whether a HIT implementation will be successful, but little research has been conducted on the impact of eMeasure (electronic performance measure) implementation on workflow. One solution to addressing implementation challenges such as the lack of attention to workflow is an implementation toolkit. An implementation toolkit is an assembly of instruments such as checklists, forms, and planning documents. We developed an initial eMeasure Implementation Toolkit for the heart failure (HF) eMeasure to allow QI and information technology (IT) professionals and their team to assess the impact of implementation on workflow. During the development phase of the toolkit, we undertook a literature review to determine the components of the toolkit. We conducted stakeholder interviews with HIT and QI key informants and subject matter experts (SMEs) at the US Department of Veteran Affairs (VA). Key informants provided a broad understanding about the context of workflow during eMeasure implementation. Based on snowball sampling, we also interviewed other SMEs based on the recommendations of the key informants who suggested tools and provided information essential to the toolkit development. The second phase involved evaluation of the toolkit for relevance and clarity, by experts in non-VA settings. The experts evaluated the sections of the toolkit that contained the tools, via a survey. The final toolkit provides a distinct set of resources and tools, which were iteratively developed during the research and available to users in a single source document. The research methodology provided a strong unified overarching implementation framework in the form of the Promoting Action on Research Implementation in Health Services (PARIHS) model in combination with a sociotechnical model of HIT that strengthened the overall design of the study

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 167)

    Get PDF
    This bibliography lists 235 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1977

    Heart sounds:From animal to patient and Mhealth

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 118

    Get PDF
    This special bibliography lists 338 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1973

    Analysis of Search on Clinical Narrative within the EHR

    Get PDF
    Electronic Health Records (EHRs) are used increasingly in the hospital and outpatient set- tings, and patients are amassing digitized clinical information. On one hand, aggregating all the patient's clinical information can greatly assist health care workers in making sound decisions. On the other hand, it can result in information overload, making it difficult to browse for information within the health record. Considering the time constraints clinicians face, one way to reduce information overload is through a search utility. However, traditional, free-text search engines within the EHR can potentially miss documents that do not contain the query but that are relevant to the clinical user's search. This dissertation aims at addressing this gap by analyzing within-patient search of the EHR and examining various semantic search approaches on clinical narrative. Our work consists of three studies where clinical users' search needs are examined, traditional string-matching is analyzed, and semantic search approaches on clinical narrative are evaluated. The first study applied a mixed method approach in order to provide a better understanding of clinical users' search needs within the EHR. It is comprised of a retrospective log analysis of search log files and a survey that was administered to clinical professionals within our institution. The log analysis attempts to categorize how users of a search system query for information, and the survey tries to understand users' search preferences. This study showed that clinical users were very interested in search functionality within the EHR and that various types of users utilize a search utility differently. Overall, most users searched for specific laboratory tests and diseases within the health record. The last two studies rely on a gold standard, which was developed specifically for this dissertation. The gold standard contained a document collection, a set of queries, and for each document/query pair, a relevance judgment. This gold standard was used to evaluate and compare different search models on clinical narrative. The second study conducted was an error analysis of the traditional, vector-space model search approach. The study examined the false positives and false negatives of this approach and categorized the errors in order to identify gaps that semantic approaches may fill. The last study was a systematic evaluation of five different semantic search approaches. These search methods consisted of distributional semantic approaches and an ontology-based approach. The study identified that a mixed topic modeling and vector-space model approach was the best performing search algorithm on our gold standard. All of these studies lay the foundation for us to gain a deeper understanding of information retrieval methods within the electronic health record. Ultimately, this will allow health care professionals to easily access pertinent patient information, which could result in better health care delivery

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Development Of A Novel Cardiac Ischemia-Reperfusion Model In The Axolotl

    Get PDF
    The Center for Disease Control’s National Center for Health Statistics data for mortality from diseases of the heart show the age-adjusted death rate has fallen from almost 600 deaths in the 1950s to just over 190 deaths per 100,000 U.S. residents today. With the recognized limitations of pharmacotherapy of myocardial infarction (MI), cell-based therapies have been undergoing rapid development and clinical testing. However, there is still no consensus about cell types, delivery routes, dosing and treatment schedules and pretreatment conditioning of cells prior to administration. Furthermore, a fundamental question remains unanswered about the reasons for the poor capacity for myocardial tissue regeneration in humans (mammals in general) as compared to robust myocardial regeneration in lower vertebrates (i.e., axolotl [Ambystoma mexicanum] and zebrafish [Danio rerio]). This lack in understanding the mechanisms behind the cell-cycle of cardiomyocytes and or cardiac progenitor cells, both during times of normal homeostasis and after pathologic insults, is central to the lack of progress in stimulating the regeneration of cardiac tissue. To understand the differences in cardiac tissue response after an MI, developing a true model of ischemia-reperfusion injury in an animal known for epimorphic regeneration in the adult life stage will help reframe the direction of research in the field of tissue engineering and regenerative medicine in the field of cardiology. To understand how the axolotl will respond to an MI, this research focuses on two Specific Aims: Specific Aim 1: Develop a cardiac injury model in the axolotl that mimics the pathophysiology of a myocardial infarction in the mammalian heart. Cardiac injury models used to study heart regeneration in lower vertebrates known for robust healing responses have used novel approaches to induce major cardiomyocyte death. However, these novel injury models do not recapitulate the cellular signaling mechanisms present during ischemia and ischemia-reperfusion injuries. Thus, to study the epimorphic regeneration of heart tissue in axolotls, a novel model of inducing ischemia needs to be developed. Specific Aim 2: Determine the spatiotemporal progression of axolotl cardiac tissue histopathology over time. Once a novel cardiac injury model produces the expected pathophysiological tissue response, chronic follow-up of surviving animals will help develop the spatiotemporal response to an MI. Data on functional recovery will require the development of regular, non-invasive techniques for monitoring heart function. After long-term recovery, appropriate harvesting of heart samples for histologic study is required to determine if the axolotl can completely regenerate cardiac injuries after an MI
    • …
    corecore