9,127 research outputs found

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Spontaneous Analogy by Piggybacking on a Perceptual System

    Full text link
    Most computational models of analogy assume they are given a delineated source domain and often a specified target domain. These systems do not address how analogs can be isolated from large domains and spontaneously retrieved from long-term memory, a process we call spontaneous analogy. We present a system that represents relational structures as feature bags. Using this representation, our system leverages perceptual algorithms to automatically create an ontology of relational structures and to efficiently retrieve analogs for new relational structures from long-term memory. We provide a demonstration of our approach that takes a set of unsegmented stories, constructs an ontology of analogical schemas (corresponding to plot devices), and uses this ontology to efficiently find analogs within new stories, yielding significant time-savings over linear analog retrieval at a small accuracy cost.Comment: Proceedings of the 35th Meeting of the Cognitive Science Society, 201

    Measuring Accuracy of Triples in Knowledge Graphs

    Get PDF
    An increasing amount of large-scale knowledge graphs have been constructed in recent years. Those graphs are often created from text-based extraction, which could be very noisy. So far, cleaning knowledge graphs are often carried out by human experts and thus very inefficient. It is necessary to explore automatic methods for identifying and eliminating erroneous information. In order to achieve this, previous approaches primarily rely on internal information i.e. the knowledge graph itself. In this paper, we introduce an automatic approach, Triples Accuracy Assessment (TAA), for validating RDF triples (source triples) in a knowledge graph by finding consensus of matched triples (among target triples) from other knowledge graphs. TAA uses knowledge graph interlinks to find identical resources and apply different matching methods between the predicates of source triples and target triples. Then based on the matched triples, TAA calculates a confidence score to indicate the correctness of a source triple. In addition, we present an evaluation of our approach using the FactBench dataset for fact validation. Our findings show promising results for distinguishing between correct and wrong triples

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    A Comparative Study of Coq and HOL

    Get PDF
    This paper illustrates the differences between the style of theory mechanisation of Coq and of HOL. This comparative study is based on the mechanisation of fragments of the theory of computation in these systems. Examples from these implementations are given to support some of the arguments discussed in this paper. The mechanisms for specifying definitions and for theorem proving are discussed separately, building in parallel two pictures of the different approaches of mechanisation given by these systems
    corecore