36 research outputs found

    Fractal features of surface electromyogram: a new measure for low level muscle activation

    Get PDF
    Identifying finger and wrist flexion based actions using single channel surface electromyogram have a number of rehabilitation, defence and human computer interface applications. These applications are currently infeasible because of unreliability in classification of sEMG when the level of muscle contraction is low and when there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during maintained wrist and finger flexion. It has been established in literature that surface electromyogram (sEMG) and other such biosignals are fractal signals. Some researchers have determined that fractal dimension (FD) is related to strength of muscle contraction. On careful analysis of fractal properties of sEMG, this research work has established that FD is related to the muscle size and complexity and not to the strength of muscle contraction. The work has also identified a novel feature, maximum fractal length (MFL) of the signal, as a good measure of strength of contraction of the muscle. From the analysis, it is observed that while at high level of contraction, root mean square (RMS) is an indicator of strength of contraction of the muscle, this relationship is not very strong when the muscle contraction is less than 50% maximum voluntary contraction. This work has established that MFL is a more reliable measure of strength of contraction compared to RMS, especially at low levels of contraction. This research work reports the use of fractal properties of sEMG to identify the small changes in strength of muscle contraction and the location of the active muscles. It is observed that fractal dimension (FD) of the signal is related with the properties of the muscle while maximum fractal length (MFL) is related to the strength of contraction of the associated muscle. The results show that classifying MFL and FD of a single channel sEMG from the forearm it is possible to accurately identify a set of finger and wrist flexion based actions even when the muscle activity is very weak. It is proposed that such a system could be used to control a prosthetic hand or for human computer interface

    Analysis of forearm muscles activity by means of new protocols of multichannel EMG signal recording and processing

    Get PDF
    Los movimientos voluntarios del cuerpo son controlados por el sistema nervioso central y periférico a través de la contracción de los músculos esqueléticos. La contracción se inicia al liberarse un neurotransmisor sobre la unión neuromuscular, iniciando la propagación de un biopotencial sobre la membrana de las fibras musculares que se desplaza hacia los tendones: el Potencial de Acción de la Unidad Motora (MUAP). La señal electromiográfica de superficie registra la activación continua de dichos potenciales sobre la superficie de la piel y constituye una valiosa herramienta para la investigación, diagnóstico y seguimiento clínico de trastornos musculares, así como para la identificación de la intención movimiento tanto en términos de dirección como de potencia. En el estudio de las enfermedades del sistema neuromuscular es necesario analizar el nivel de actividad, la capacidad de producción de fuerza, la activación muscular conjunta y la predisposición a la fatiga muscular, todos ellos asociados con factores fisiológicos que determinan la resultante contracción mioeléctrica. Además, el uso de matrices de electrodos facilita la investigación de las propiedades periféricas de las unidades motoras activas, las características anatómicas del músculo y los cambios espaciales en su activación, ocasionados por el tipo de tarea motora o la potencia de la misma. El objetivo principal de esta tesis es el diseño e implementación de protocolos experimentales y algoritmos de procesado para extraer información fiable de señales sEMG multicanal en 1 y 2 dimensiones del espacio. Dicha información ha sido interpretada y relacionada con dos patologías específicas de la extremidad superior: Epicondilitis Lateral y Lesión de Esfuerzo Repetitivo. También fue utilizada para identificar la dirección de movimiento y la fuerza asociada a la contracción muscular, cuyos patrones podrían ser de utilidad en aplicaciones donde la señal electromiográfica se utilice para controlar interfaces hombre-máquina como es el caso de terapia física basada en robots, entornos virtuales de rehabilitación o realimentación de la actividad muscular. En resumen, las aportaciones más relevantes de esta tesis son: * La definición de protocolos experimentales orientados al registro de señales sEMG en una región óptima del músculo. * Definición de índices asociados a la co-activación de diferentes músculos * Identificación de señales artefactuadas en registros multicanal * Selección de los canales mas relevantes para el análisis Extracción de un conjunto de características que permita una alta exactitud en la identificación de tareas motoras Los protocolos experimentales y los índices propuestos permitieron establecer que diversos desequilibrios entre músculos extrínsecos del antebrazo podrían desempeñar un papel clave en la fisiopatología de la epicondilitis lateral. Los resultados fueron consistentes en diferentes ejercicios y pueden definir un marco de evaluación para el seguimiento y evaluación de pacientes en programas de rehabilitación motora. Por otra parte, se encontró que las características asociadas con la distribución espacial de los MUAPs mejoran la exactitud en la identificación de la intención de movimiento. Lo que es más, las características extraídas de registros sEMG de alta densidad son más robustas que las extraídas de señales bipolares simples, no sólo por la redundancia de contacto implicada en HD-EMG, sino también porque permite monitorizar las regiones del músculo donde la amplitud de la señal es máxima y que varían con el tipo de ejercicio, permitiendo así una mejor estimación de la activación muscular mediante el análisis de los canales mas relevantes.Voluntary movements are achieved by the contraction of skeletal muscles controlled by the Central and Peripheral Nervous system. The contraction is initiated by the release of a neurotransmitter that promotes a reaction in the walls of the muscular fiber, producing a biopotential known as Motor Unit Action Potential (MUAP) that travels from the neuromuscular junction to the tendons. The surface electromyographic signal records the continuous activation of such potentials over the surface of the skin and constitutes a valuable tool for the diagnosis, monitoring and clinical research of muscular disorders as well as to infer motion intention not only regarding the direction of the movement but also its power. In the study of diseases of the neuromuscular system it is necessary to analyze the level of activity, the capacity of production of strength, the load-sharing between muscles and the probably predisposition to muscular fatigue, all of them associated with physiological factors determining the resultant muscular contraction. Moreover, the use of electrode arrays facilitate the investigation of the peripheral properties of the active Motor Units, the anatomical characteristics of the muscle and the spatial changes induced in their activation of as product of type of movement or power of the contraction.The main objective of this thesis was the design and implementation of experimental protocols, and algorithms to extract information from multichannel sEMG signals in 1 and 2 dimensions of the space. Such information was interpreted and related to pathological events associated to two upper-limb conditions: Lateral Epicondylitis and Repetitive Strain Injury. It was also used to identify the direction of movement and contraction strength which could be useful in applications concerning the use of biofeedback from EMG like in robotic- aided therapies and computer-based rehabilitation training.In summary, the most relevant contributions are:§The definition of experimental protocols intended to find optimal regions for the recording of sEMG signals. §The definition of indices associated to the co- activation of different muscles. §The detection of low-quality signals in multichannel sEMG recordings.§ The selection of the most relevant EMG channels for the analysis§The extraction of a set of features that led to high classification accuracy in the identification of tasks.The experimental protocols and the proposed indices allowed establishing that imbalances between extrinsic muscles of the forearm could play a key role in the pathophysiology of lateral epicondylalgia. Results were consistent in different types of motor task and may define an assessment framework for the monitoring and evaluation of patients during rehabilitation programs.On the other hand, it was found that features associated with the spatial distribution of the MUAPs improve the accuracy of the identification of motion intention. What is more, features extracted from high density EMG recordings are more robust not only because it implies contact redundancy but also because it allows the tracking of (task changing) skin surface areas where EMG amplitude is maximal and a better estimation of muscle activity by the proper selection of the most significant channels

    Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions

    Get PDF
    Abstract Background Myoelectric control based on hand gesture classification can be used for effective, contactless human–machine interfacing in general applications (e.g., consumer market) as well as in the clinical context. However, the accuracy of hand gesture classification can be impacted by several factors including changing wrist position. The present study aimed at investigating how channel configuration (number and placement of electrode pads) affects performance in hand gesture recognition across wrist positions, with the overall goal of reducing the number of channels without the loss of performance with respect to the benchmark (all channels). Methods Matrix electrodes (256 channels) were used to record high-density EMG from the forearm of 13 healthy subjects performing a set of 8 gestures in 3 wrist positions and 2 force levels (low and moderate). A reduced set of channels was chosen by applying sequential forward selection (SFS) and simple circumferential placement (CIRC) and used for gesture classification with linear discriminant analysis. The classification success rate and task completion rate were the main outcome measures for offline analysis across the different number of channels and online control using 8 selected channels, respectively. Results The offline analysis demonstrated that good accuracy (> 90%) can be achieved with only a few channels. However, using data from all wrist positions required more channels to reach the same performance. Despite the targeted placement (SFS) performing similarly to CIRC in the offline analysis, the task completion rate [median (lower–upper quartile)] in the online control was significantly higher for SFS [71.4% (64.8–76.2%)] compared to CIRC [57.1% (51.8–64.8%), p < 0.01], especially for low contraction levels [76.2% (66.7–84.5%) for SFS vs. 57.1% (47.6–60.7%) for CIRC, p < 0.01]. For the reduced number of electrodes, the performance with SFS was comparable to that obtained when using the full matrix, while the selected electrodes were highly subject-specific. Conclusions The present study demonstrated that the number of channels required for gesture classification with changing wrist positions could be decreased substantially without loss of performance, if those channels are placed strategically along the forearm and individually for each subject. The results also emphasize the importance of online assessment and motivate the development of configurable matrix electrodes with integrated channel selection

    Decoding motor neuron behavior for advanced control of upper limb prostheses

    Get PDF
    One of the main challenges in upper limb prosthesis control to date is to provide devices intuitive to use and capable to reproduce the natural movements of the arm and hand. One approach to solve this challenge is to use the same control signals for prosthesis control that our nervous system uses to control its muscles. This thesis aims to investigate the possibility of natural, intuitive prosthesis control using neural information obtained with available surface EMG decomposition methods. In order to explore all aspects of such a novel approach, a series of five studies were performed with the final goal of implementing a proof of concept and comparing its performance with state of the art myoelectric control. The performed investigations revealed important insights in motor unit physiology after targeted muscle reinnervation, EMG decomposition in dynamic voluntary contractions of the forearm, and the properties and challenges of neural information based prosthesis control. The main outcome of the thesis is that neural information based prosthesis control is capable to outperform myoelectric approaches in pattern recognition, linear regression and nonlinear regression, as determined by offline performance comparisons. The final proof of concept for this novel approach was a robust regression method based on neuromusculoskeletal modeling. The kinematics estimation of the proposed approach outperformed EMG-based nonlinear regression in both able-bodied subjects and patients with limb deficiency, indicating that using neural information is a promising avenue for advanced myoelectric control.2017-11-3
    corecore