1,097 research outputs found

    A cascade of classifiers for extracting medication information from discharge summaries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracting medication information from clinical records has many potential applications, and recently published research, systems, and competitions reflect an interest therein. Much of the early extraction work involved rules and lexicons, but more recently machine learning has been applied to the task.</p> <p>Methods</p> <p>We present a hybrid system consisting of two parts. The first part, field detection, uses a cascade of statistical classifiers to identify medication-related named entities. The second part uses simple heuristics to link those entities into medication events.</p> <p>Results</p> <p>The system achieved performance that is comparable to other approaches to the same task. This performance is further improved by adding features that reference external medication name lists.</p> <p>Conclusions</p> <p>This study demonstrates that our hybrid approach outperforms purely statistical or rule-based systems. The study also shows that a cascade of classifiers works better than a single classifier in extracting medication information. The system is available as is upon request from the first author.</p

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    J Biomed Inform

    Get PDF
    We followed a systematic approach based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) systems that generate structured information from unstructured free text. Seven literature databases were searched with a query combining the concepts of natural language processing and structured data capture. Two reviewers screened all records for relevance during two screening phases, and information about clinical NLP systems was collected from the final set of papers. A total of 7149 records (after removing duplicates) were retrieved and screened, and 86 were determined to fit the review criteria. These papers contained information about 71 different clinical NLP systems, which were then analyzed. The NLP systems address a wide variety of important clinical and research tasks. Certain tasks are well addressed by the existing systems, while others remain as open challenges that only a small number of systems attempt, such as extraction of temporal information or normalization of concepts to standard terminologies. This review has identified many NLP systems capable of processing clinical free text and generating structured output, and the information collected and evaluated here will be important for prioritizing development of new approaches for clinical NLP.CC999999/ImCDC/Intramural CDC HHS/United States2019-11-20T00:00:00Z28729030PMC6864736694

    Recognition of medication information from discharge summaries using ensembles of classifiers

    Get PDF
    BACKGROUND: Extraction of clinical information such as medications or problems from clinical text is an important task of clinical natural language processing (NLP). Rule-based methods are often used in clinical NLP systems because they are easy to adapt and customize. Recently, supervised machine learning methods have proven to be effective in clinical NLP as well. However, combining different classifiers to further improve the performance of clinical entity recognition systems has not been investigated extensively. Combining classifiers into an ensemble classifier presents both challenges and opportunities to improve performance in such NLP tasks. METHODS: We investigated ensemble classifiers that used different voting strategies to combine outputs from three individual classifiers: a rule-based system, a support vector machine (SVM) based system, and a conditional random field (CRF) based system. Three voting methods were proposed and evaluated using the annotated data sets from the 2009 i2b2 NLP challenge: simple majority, local SVM-based voting, and local CRF-based voting. RESULTS: Evaluation on 268 manually annotated discharge summaries from the i2b2 challenge showed that the local CRF-based voting method achieved the best F-score of 90.84% (94.11% Precision, 87.81% Recall) for 10-fold cross-validation. We then compared our systems with the first-ranked system in the challenge by using the same training and test sets. Our system based on majority voting achieved a better F-score of 89.65% (93.91% Precision, 85.76% Recall) than the previously reported F-score of 89.19% (93.78% Precision, 85.03% Recall) by the first-ranked system in the challenge. CONCLUSIONS: Our experimental results using the 2009 i2b2 challenge datasets showed that ensemble classifiers that combine individual classifiers into a voting system could achieve better performance than a single classifier in recognizing medication information from clinical text. It suggests that simple strategies that can be easily implemented such as majority voting could have the potential to significantly improve clinical entity recognition

    Method for Designing Semantic Annotation of Sepsis Signs in Clinical Text

    Get PDF
    Annotated clinical text corpora are essential for machine learning studies that model and predict care processes and disease progression. However, few studies describe the necessary experimental design of the annotation guideline and annotation phases. This makes replication, reuse, and adoption challenging. Using clinical questions about sepsis, we designed a semantic annotation guideline to capture sepsis signs from clinical text. The clinical questions aid guideline design, application, and evaluation. Our method incrementally evaluates each change in the guideline by testing the resulting annotated corpus using clinical questions. Additionally, our method uses inter-annotator agreement to judge the annotator compliance and quality of the guideline. We show that the method, combined with controlled design increments, is simple and allows the development and measurable improvement of a purpose-built semantic annotation guideline. We believe that our approach is useful for incremental design of semantic annotation guidelines in general
    corecore