29,848 research outputs found

    Extracting semantic video objects

    Get PDF
    Dagan Feng2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The K-Space segmentation tool set

    Get PDF
    In this paper we describe two applications, created as part of the K-Space Network of Excellence, designed to allow researchers to use and experiment with state-of-the-art methods for spatial segmentation of images and video sequences. The first of these tools is an _Interactive Segmentation Tool_, developed to allow accurate human-guided segmentation of semantic objects from images using different segmentation algorithms. The tool is particularly useful for generating ground-truth segmentations, extracting objects for further processing, and as a general image processing application.The second tool we developed is designed for fully automatic spatial region segmentation of image and video. The tool is web-based; usage only requires a browser. Both the automatic and interactive segmentation tools have been made available online; we anticipate they will be a valuable resource for other researchers

    Practical Uses of A Semi-automatic Video Object Extraction System

    Get PDF
    Object-based technology is important for computer vision applications including gesture understanding, image recognition, augmented reality, etc. However, extracting the shape information of semantic objects from video sequences is a very difficult task, since this information is not explicitly provided within the video data. Therefore, an application for exttracting the semantic video object is indispensable and important for many advanced applications. An algorithm for semi-automatic video object extraction system has been developed. The performance measures of video object extraction system; including evaluation using ground truth and error metric is shown, followed by some practical uses of our video object extraction system. The principle at the basis of semi-automatic object extraction technique is the interaction of the user during some stages of the segmentation process, whereby the semantic information is provided directly by the user. After the user provides the initial segmentation of the semantic video objects, a tracking mechanism follows its temporal transformation in the subsequent frames, thus propagating the semantic information. Since the tracking tends to introduce boundary errors, the semantic information can be refreshed by the user at certain key frame locations in the video sequence. The tracking mechanism can also operate in forward or backward direction of the video sequence. The performance analysis of the results is described using single and multiple key frames; Mean Error and “Last_Error”, and also forward and backward extraction. To achieve best performance, results from forward and backward extraction can be merged

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    Semantic levels of domain-independent commonsense knowledgebase for visual indexing and retrieval applications

    Get PDF
    Building intelligent tools for searching, indexing and retrieval applications is needed to congregate the rapidly increasing amount of visual data. This raised the need for building and maintaining ontologies and knowledgebases to support textual semantic representation of visual contents, which is an important block in these applications. This paper proposes a commonsense knowledgebase that forms the link between the visual world and its semantic textual representation. This domain-independent knowledge is provided at different levels of semantics by a fully automated engine that analyses, fuses and integrates previous commonsense knowledgebases. This knowledgebase satisfies the levels of semantic by adding two new levels: temporal event scenarios and psycholinguistic understanding. Statistical properties and an experiment evaluation, show coherency and effectiveness of the proposed knowledgebase in providing the knowledge needed for wide-domain visual applications
    corecore