7,200 research outputs found

    Twofold Video Hashing with Automatic Synchronization

    Full text link
    Video hashing finds a wide array of applications in content authentication, robust retrieval and anti-piracy search. While much of the existing research has focused on extracting robust and secure content descriptors, a significant open challenge still remains: Most existing video hashing methods are fallible to temporal desynchronization. That is, when the query video results by deleting or inserting some frames from the reference video, most existing methods assume the positions of the deleted (or inserted) frames are either perfectly known or reliably estimated. This assumption may be okay under typical transcoding and frame-rate changes but is highly inappropriate in adversarial scenarios such as anti-piracy video search. For example, an illegal uploader will try to bypass the 'piracy check' mechanism of YouTube/Dailymotion etc by performing a cleverly designed non-uniform resampling of the video. We present a new solution based on dynamic time warping (DTW), which can implement automatic synchronization and can be used together with existing video hashing methods. The second contribution of this paper is to propose a new robust feature extraction method called flow hashing (FH), based on frame averaging and optical flow descriptors. Finally, a fusion mechanism called distance boosting is proposed to combine the information extracted by DTW and FH. Experiments on real video collections show that such a hash extraction and comparison enables unprecedented robustness under both spatial and temporal attacks.Comment: submitted to Image Processing (ICIP), 2014 21st IEEE International Conference o

    Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis

    Full text link
    Anomaly detection in database management systems (DBMSs) is difficult because of increasing number of statistics (stat) and event metrics in big data system. In this paper, I propose an automatic DBMS diagnosis system that detects anomaly periods with abnormal DB stat metrics and finds causal events in the periods. Reconstruction error from deep autoencoder and statistical process control approach are applied to detect time period with anomalies. Related events are found using time series similarity measures between events and abnormal stat metrics. After training deep autoencoder with DBMS metric data, efficacy of anomaly detection is investigated from other DBMSs containing anomalies. Experiment results show effectiveness of proposed model, especially, batch temporal normalization layer. Proposed model is used for publishing automatic DBMS diagnosis reports in order to determine DBMS configuration and SQL tuning.Comment: 8 page

    Secure Pick Up: Implicit Authentication When You Start Using the Smartphone

    Full text link
    We propose Secure Pick Up (SPU), a convenient, lightweight, in-device, non-intrusive and automatic-learning system for smartphone user authentication. Operating in the background, our system implicitly observes users' phone pick-up movements, the way they bend their arms when they pick up a smartphone to interact with the device, to authenticate the users. Our SPU outperforms the state-of-the-art implicit authentication mechanisms in three main aspects: 1) SPU automatically learns the user's behavioral pattern without requiring a large amount of training data (especially those of other users) as previous methods did, making it more deployable. Towards this end, we propose a weighted multi-dimensional Dynamic Time Warping (DTW) algorithm to effectively quantify similarities between users' pick-up movements; 2) SPU does not rely on a remote server for providing further computational power, making SPU efficient and usable even without network access; and 3) our system can adaptively update a user's authentication model to accommodate user's behavioral drift over time with negligible overhead. Through extensive experiments on real world datasets, we demonstrate that SPU can achieve authentication accuracy up to 96.3% with a very low latency of 2.4 milliseconds. It reduces the number of times a user has to do explicit authentication by 32.9%, while effectively defending against various attacks.Comment: Published on ACM Symposium on Access Control Models and Technologies (SACMAT) 201

    Audio-Visual Sentiment Analysis for Learning Emotional Arcs in Movies

    Full text link
    Stories can have tremendous power -- not only useful for entertainment, they can activate our interests and mobilize our actions. The degree to which a story resonates with its audience may be in part reflected in the emotional journey it takes the audience upon. In this paper, we use machine learning methods to construct emotional arcs in movies, calculate families of arcs, and demonstrate the ability for certain arcs to predict audience engagement. The system is applied to Hollywood films and high quality shorts found on the web. We begin by using deep convolutional neural networks for audio and visual sentiment analysis. These models are trained on both new and existing large-scale datasets, after which they can be used to compute separate audio and visual emotional arcs. We then crowdsource annotations for 30-second video clips extracted from highs and lows in the arcs in order to assess the micro-level precision of the system, with precision measured in terms of agreement in polarity between the system's predictions and annotators' ratings. These annotations are also used to combine the audio and visual predictions. Next, we look at macro-level characterizations of movies by investigating whether there exist `universal shapes' of emotional arcs. In particular, we develop a clustering approach to discover distinct classes of emotional arcs. Finally, we show on a sample corpus of short web videos that certain emotional arcs are statistically significant predictors of the number of comments a video receives. These results suggest that the emotional arcs learned by our approach successfully represent macroscopic aspects of a video story that drive audience engagement. Such machine understanding could be used to predict audience reactions to video stories, ultimately improving our ability as storytellers to communicate with each other.Comment: Data Mining (ICDM), 2017 IEEE 17th International Conference o
    corecore