6,876 research outputs found

    Employing Topological Data Analysis On Social Networks Data To Improve Information Diffusion

    Get PDF
    For the past decade, the number of users on social networks has grown tremendously from thousands in 2004 to billions by the end of 2015. On social networks, users create and propagate billions of pieces of information every day. The data can be in many forms (such as text, images, or videos). Due to the massive usage of social networks and availability of data, the field of social network analysis and mining has attracted many researchers from academia and industry to analyze social network data and explore various research opportunities (including information diffusion and influence measurement). Information diffusion is defined as the way that information is spread on social networks; this can occur due to social influence. Influence is the ability affect others without direct commands. Influence on social networks can be observed through social interactions between users (such as retweet on Twitter, like on Instagram, or favorite on Flickr). In order to improve information diffusion, we measure the influence of users on social networks to predict influential users. The ability to predict the popularity of posts can improve information diffusion as well; posts become popular when they diffuse on social networks. However, measuring influence and predicting posts popularity can be challenging due to unstructured, big, noisy data. Therefore, social network mining and analysis techniques are essential for extracting meaningful information about influential users and popular posts. For measuring the influence of users, we proposed a novel influence measurement that integrates both users’ structural locations and characteristics on social networks, which then can be used to predict influential users on social networks. centrality analysis techniques are adapted to identify the users’ structural locations. Centrality is used to identify the most important nodes within a graph; social networks can be represented as graphs (where nodes represent users and edges represent interactions between users), and centrality analysis can be adopted. The second part of the work focuses on predicting the popularity of images on social networks over time. The effect of social context, image content and early popularity on image popularity using machine learning algorithms are analyzed. A new approach for image content is developed to represent the semantics of an image using its captions, called keyword vector. This approach is based on Word2vec (an unsupervised two-layer neural network that generates distributed numerical vectors to represent words in the vector space to detect similarity) and k-means (a popular clustering algorithm). However, machine learning algorithms do not address issues arising from the nature of social network data, noise and high dimensionality in data. Therefore, topological data analysis is adopted. It is a noble approach to extract meaningful information from high-dimensional data and is robust to noise. It is based on topology, which aims to study the geometric shape of data. In this thesis, we explore the feasibility of topological data analysis for mining social network data by addressing the problem of image popularity. The proposed techniques are employed to datasets crawled from real-world social networks to examine the performance of each approach. The results for predicting the influential users outperforms existing measurements in terms of correlation. As for predicting the popularity of images on social networks, the results indicate that the proposed features provides a promising opportunity and exceeds the related work in terms of accuracy. Further exploration of these research topics can be used for a variety of real-world applications (including improving viral marketing, public awareness, political standings and charity work)

    Emergence of influential spreaders in modified rumor models

    Full text link
    The burst in the use of online social networks over the last decade has provided evidence that current rumor spreading models miss some fundamental ingredients in order to reproduce how information is disseminated. In particular, recent literature has revealed that these models fail to reproduce the fact that some nodes in a network have an influential role when it comes to spread a piece of information. In this work, we introduce two mechanisms with the aim of filling the gap between theoretical and experimental results. The first model introduces the assumption that spreaders are not always active whereas the second model considers the possibility that an ignorant is not interested in spreading the rumor. In both cases, results from numerical simulations show a higher adhesion to real data than classical rumor spreading models. Our results shed some light on the mechanisms underlying the spreading of information and ideas in large social systems and pave the way for more realistic diffusion models.Comment: 14 Pages, 6 figures, accepted for publication in Journal of Statistical Physic

    A Data-driven Study of Influences in Twitter Communities

    Full text link
    This paper presents a quantitative study of Twitter, one of the most popular micro-blogging services, from the perspective of user influence. We crawl several datasets from the most active communities on Twitter and obtain 20.5 million user profiles, along with 420.2 million directed relations and 105 million tweets among the users. User influence scores are obtained from influence measurement services, Klout and PeerIndex. Our analysis reveals interesting findings, including non-power-law influence distribution, strong reciprocity among users in a community, the existence of homophily and hierarchical relationships in social influences. Most importantly, we observe that whether a user retweets a message is strongly influenced by the first of his followees who posted that message. To capture such an effect, we propose the first influencer (FI) information diffusion model and show through extensive evaluation that compared to the widely adopted independent cascade model, the FI model is more stable and more accurate in predicting influence spreads in Twitter communities.Comment: 11 page

    Hierarchical Propagation Networks for Fake News Detection: Investigation and Exploitation

    Full text link
    Consuming news from social media is becoming increasingly popular. However, social media also enables the widespread of fake news. Because of its detrimental effects brought by social media, fake news detection has attracted increasing attention. However, the performance of detecting fake news only from news content is generally limited as fake news pieces are written to mimic true news. In the real world, news pieces spread through propagation networks on social media. The news propagation networks usually involve multi-levels. In this paper, we study the challenging problem of investigating and exploiting news hierarchical propagation network on social media for fake news detection. In an attempt to understand the correlations between news propagation networks and fake news, first, we build a hierarchical propagation network from macro-level and micro-level of fake news and true news; second, we perform a comparative analysis of the propagation network features of linguistic, structural and temporal perspectives between fake and real news, which demonstrates the potential of utilizing these features to detect fake news; third, we show the effectiveness of these propagation network features for fake news detection. We further validate the effectiveness of these features from feature important analysis. Altogether, this work presents a data-driven view of hierarchical propagation network and fake news and paves the way towards a healthier online news ecosystem.Comment: 10 page

    Together we stand, Together we fall, Together we win: Dynamic Team Formation in Massive Open Online Courses

    Full text link
    Massive Open Online Courses (MOOCs) offer a new scalable paradigm for e-learning by providing students with global exposure and opportunities for connecting and interacting with millions of people all around the world. Very often, students work as teams to effectively accomplish course related tasks. However, due to lack of face to face interaction, it becomes difficult for MOOC students to collaborate. Additionally, the instructor also faces challenges in manually organizing students into teams because students flock to these MOOCs in huge numbers. Thus, the proposed research is aimed at developing a robust methodology for dynamic team formation in MOOCs, the theoretical framework for which is grounded at the confluence of organizational team theory, social network analysis and machine learning. A prerequisite for such an undertaking is that we understand the fact that, each and every informal tie established among students offers the opportunities to influence and be influenced. Therefore, we aim to extract value from the inherent connectedness of students in the MOOC. These connections carry with them radical implications for the way students understand each other in the networked learning community. Our approach will enable course instructors to automatically group students in teams that have fairly balanced social connections with their peers, well defined in terms of appropriately selected qualitative and quantitative network metrics.Comment: In Proceedings of 5th IEEE International Conference on Application of Digital Information & Web Technologies (ICADIWT), India, February 2014 (6 pages, 3 figures
    • …
    corecore