34 research outputs found

    Diamond-based models for scientific visualization

    Get PDF
    Hierarchical spatial decompositions are a basic modeling tool in a variety of application domains including scientific visualization, finite element analysis and shape modeling and analysis. A popular class of such approaches is based on the regular simplex bisection operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the midpoint of a predetermined edge. Regular simplex bisection produces adaptive simplicial meshes of high geometric quality, while simplifying the extraction of crack-free, or conforming, approximations to the original dataset. Efficient multiresolution representations for such models have been achieved in 2D and 3D by clustering sets of simplices sharing the same bisection edge into structures called diamonds. In this thesis, we introduce several diamond-based approaches for scientific visualization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two related simplicial decompositions of hypercubes. This enables us to enumerate the vertices, simplices, parents and children of a diamond. In particular, we identify the number of simplices involved in conforming updates to be factorial in the dimension and group these into a linear number of subclusters of simplices that are generated simultaneously. The latter form the basis for a compact pointerless representation for conforming meshes generated by regular simplex bisection and for efficiently navigating the topological connectivity of these meshes. Secondly, we introduce the supercube as a high-level primitive on such nested meshes based on the atomic units within the underlying triangulation grid. We propose the use of supercubes to associate information with coherent subsets of the full hierarchy and demonstrate the effectiveness of such a representation for modeling multiresolution terrain and volumetric datasets. Next, we introduce Isodiamond Hierarchies, a general framework for spatial access structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric relationships of the diamond model. We use an isodiamond hierarchy to encode irregular updates to a multiresolution isosurface or interval volume in terms of regular updates to diamonds. Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their higher dimensional analogues, through the lens of diamond hierarchies. This allows us to determine the relationships involved in generating balanced hypercubic meshes and to propose a compact pointerless representation of such meshes. We also provide a local diamond-based triangulation algorithm to generate high-quality conforming simplicial meshes

    AMM: Adaptive Multilinear Meshes

    Full text link
    We present Adaptive Multilinear Meshes (AMM), a new framework that significantly reduces the memory footprint compared to existing data structures. AMM uses a hierarchy of cuboidal cells to create continuous, piecewise multilinear representation of uniformly sampled data. Furthermore, AMM can selectively relax or enforce constraints on conformity, continuity, and coverage, creating a highly adaptive and flexible representation to support a wide range of use cases. AMM supports incremental updates in both spatial resolution and numerical precision establishing the first practical data structure that can seamlessly explore the tradeoff between resolution and precision. We use tensor products of linear B-spline wavelets to create an adaptive representation and illustrate the advantages of our framework. AMM provides a simple interface for evaluating the function defined on the adaptive mesh, efficiently traversing the mesh, and manipulating the mesh, including incremental, partial updates. Our framework is easy to adopt for standard visualization and analysis tasks. As an example, we provide a VTK interface, through efficient on-demand conversion, which can be used directly by corresponding tools, such as VisIt, disseminating the advantages of faster processing and a smaller memory footprint to a wider audience. We demonstrate the advantages of our approach for simplifying scalar-valued data for commonly used visualization and analysis tasks using incremental construction, according to mixed resolution and precision data streams

    Automatic parallel octree grid generation software with an extensible solver framework and a focus on urban simulation

    Get PDF
    The development of an automatic, dynamic, parallel, Cartesian, linear forest-of-octree grid generator and partial differential equation (PDE) solver framework is presented. This research is bundled into an application programmed with C++ which uses MPI for distributed parallelism. The application is named paros which stands for PARallel Octree Solver. In its current implementation, the application provides a \u27zeroth\u27 order representation of the target geometry, and as such, no cut-cell algorithm, projection method, or immersed boundary condition are implemented. In this case, \u27zeroth\u27 order means that no geometry is ever exactly represented in the final computational mesh: an octree element is either completely in the domain or entirely outside of it. Any element that contains or is intersected by a geometry facet is removed from the final mesh which results in a \u27blocky\u27 or \u27stepped\u27 geometry representation and simplifies boundary computations. The computational octree mesh creation is completely parallel and automated. The algorithm is dynamic in the sense that it is repartitioned dynamically throughout the grid generation process to maintain optimal load balancing during all phases of the mesh genesis. A linear octree data structure is used to store the octree mesh elements and is leveraged for optimal load balancing. An additional hierarchical octree is used to significantly improve algorithms that suffer from this linear storage paradigm. This work focuses on, but is not limited to, applications related to urban simulations and may be applied to plume/contaminant propagation. Within the PDE solution framework a cell-centered, incompressible, unsteady, Navier Stokes solver with an energy term to account for thermal buoyancy is implemented and validated using canonical test cases. Turbulence closure is implemented in the form of the Smagorinski large eddy simulation (LES) model. The parallel grid generation and solution process is tested on a large scale cityscape geometry and shown to be robust and efficient. Additionally, an implementation of the compressible Navier-Stokes equations is coded within the framework. The framework is extensible such that adding other types of numerical PDE solvers should not be difficult. Other features including adaptive mesh refinement (AMR) and contaminant transport functionality are included

    Fast and Exact Fiber Surfaces for Tetrahedral Meshes

    Get PDF
    Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results

    Large-scale tree-based unfitted finite elements for metal additive manufacturing

    Get PDF
    This thesis addresses large-scale numerical simulations of partial differential equations posed on evolving geometries. Our target application is the simulation of metal additive manufacturing (or 3D printing) with powder-bed fusion methods, such as Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) or Electron-Beam Melting (EBM). The simulation of metal additive manufacturing processes is a remarkable computational challenge, because processes are characterised by multiple scales in space and time and multiple complex physics that occur in intricate three-dimensional growing-in-time geometries. Only the synergy of advanced numerical algorithms and high-performance scientific computing tools can fully resolve, in the short run, the simulation needs in the area. The main goal of this Thesis is to design a a novel highly-scalable numerical framework with multi-resolution capability in arbitrarily complex evolving geometries. To this end, the framework is built by combining three computational tools: (1) parallel mesh generation and adaptation with forest-of-trees meshes, (2) robust unfitted finite element methods and (3) parallel finite element modelling of the geometry evolution in time. Our numerical research is driven by several limitations and open questions in the state-of-the-art of the three aforementioned areas, which are vital to achieve our main objective. All our developments are deployed with high-end distributed-memory implementations in the large-scale open-source software project FEMPAR. In considering our target application, (4) temporal and spatial model reduction strategies for thermal finite element models are investigated. They are coupled to our new large-scale computational framework to simplify optimisation of the manufacturing process. The contributions of this Thesis span the four ingredients above. Current understanding of (1) is substantially improved with rigorous proofs of the computational benefits of the 2:1 k-balance (ease of parallel implementation and high-scalability) and the minimum requirements a parallel tree-based mesh must fulfil to yield correct parallel finite element solvers atop them. Concerning (2), a robust, optimal and scalable formulation of the aggregated unfitted finite element method is proposed on parallel tree-based meshes for elliptic problems with unfitted external contour or unfitted interfaces. To the author’s best knowledge, this marks the first time techniques (1) and (2) are brought together. After enhancing (1)+(2) with a novel parallel approach for (3), the resulting framework is able to mitigate a major performance bottleneck in large-scale simulations of metal additive manufacturing processes by powder-bed fusion: scalable adaptive (re)meshing in arbitrarily complex geometries that grow in time. Along the development of this Thesis, our application problem (4) is investigated in two joint collaborations with the Monash Centre for Additive Manufacturing and Monash University in Melbourne, Australia. The first contribution is an experimentally-supported thorough numerical assessment of time-lumping methods, the second one is a novel experimentally-validated formulation of a new physics-based thermal contact model, accounting for thermal inertia and suitable for model localisation, the so-called virtual domain approximation. By efficiently exploiting high-performance computing resources, our new computational framework enables large-scale finite element analysis of metal additive manufacturing processes, with increased fidelity of predictions and dramatical reductions of computing times. It can also be combined with the proposed model reductions for fast thermal optimisation of the manufacturing process. These tools open the path to accelerate the understanding of the process-to-performance link and digital product design and certification in metal additive manufacturing, two milestones that are vital to exploit the technology for mass-production.Aquesta tesi tracta la simulació a gran escala d'equacions en derivades parcials sobre geometries variables. L'aplicació principal és la simulació de procesos de fabricació additiva (o impressió 3D) amb metalls i per mètodes de fusió de llit de pols, com ara Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) o Electron-Beam Melting (EBM). La simulació d'aquests processos és un repte computacional excepcional, perquè els processos estan caracteritzats per múltiples escales espaitemporals i múltiples físiques que tenen lloc sobre geometries tridimensionals complicades que creixen en el temps. La sinèrgia entre algorismes numèrics avançats i eines de computació científica d'alt rendiment és la única via per resoldre completament i a curt termini les necessitats en simulació d'aquesta àrea. El principal objectiu d'aquesta tesi és dissenyar un nou marc numèric escalable de simulació amb capacitat de multiresolució en geometries complexes i variables. El nou marc es construeix unint tres eines computacionals: (1) mallat paral·lel i adaptatiu amb malles de boscs d'arbre, (2) mètodes d'elements finits immersos robustos i (3) modelització en paral·lel amb elements finits de geometries que creixen en el temps. Algunes limitacions i problemes oberts en l'estat de l'art, que són claus per aconseguir el nostre objectiu, guien la nostra recerca. Tots els desenvolupaments s'implementen en arquitectures de memòria distribuïda amb el programari d'accés obert FEMPAR. Quant al problema d'aplicació, (4) s'investiguen models reduïts en espai i temps per models tèrmics del procés. Aquests models reduïts s'acoplen al nostre marc computacional per simplificar l'optimització del procés. Les contribucions d'aquesta tesi abasten els quatre punts de dalt. L'estat de l'art de (1) es millora substancialment amb proves riguroses dels beneficis computacionals del 2:1 balancejat (fàcil paral·lelització i alta escalabilitat), així com dels requisits mínims que aquest tipus de mallat han de complir per garantir que els espais d'elements finits que s'hi defineixin estiguin ben posats. Quant a (2), s'ha formulat un mètode robust, òptim i escalable per agregació per problemes el·líptics amb contorn o interface immerses. Després d'augmentar (1)+(2) amb un nova estratègia paral·lela per (3), el marc de simulació resultant mitiga de manera efectiva el principal coll d'ampolla en la simulació de processos de fabricació additiva en llits de pols de metall: adaptivitat i remallat escalable en geometries complexes que creixen en el temps. Durant el desenvolupament de la tesi, es col·labora amb el Monash Centre for Additive Manufacturing i la Universitat de Monash de Melbourne, Austràlia, per investigar el problema d'aplicació. En primer lloc, es fa una anàlisi experimental i numèrica exhaustiva dels mètodes d'aggregació temporal. En segon lloc, es proposa i valida experimental una nova formulació de contacte tèrmic que té en compte la inèrcia tèrmica i és adequat per a localitzar el model, l'anomenada aproximació per dominis virtuals. Mitjançant l'ús eficient de recursos computacionals d'alt rendiment, el nostre nou marc computacional fa possible l'anàlisi d'elements finits a gran escala dels processos de fabricació additiva amb metalls, amb augment de la fidelitat de les prediccions i reduccions significatives de temps de computació. Així mateix, es pot combinar amb els models reduïts que es proposen per l'optimització tèrmica del procés de fabricació. Aquestes eines contribueixen a accelerar la comprensió del lligam procés-rendiment i la digitalització del disseny i certificació de productes en fabricació additiva per metalls, dues fites crucials per explotar la tecnologia en producció en massa.Postprint (published version

    Interactive volume ray tracing

    Get PDF
    Die Visualisierung von volumetrischen Daten ist eine der interessantesten, aber sicherlich auch schwierigsten Anwendungsgebiete innerhalb der wissenschaftlichen Visualisierung. Im Gegensatz zu Oberflächenmodellen, repräsentieren solche Daten ein semi-transparentes Medium in einem 3D-Feld. Anwendungen reichen von medizinischen Untersuchungen, Simulation physikalischer Prozesse bis hin zur visuellen Kunst. Viele dieser Anwendungen verlangen Interaktivität hinsichtlich Darstellungs- und Visualisierungsparameter. Der Ray-Tracing- (Stahlverfolgungs-) Algorithmus wurde dabei, obwohl er inhärent die Interaktion mit einem solchen Medium simulieren kann, immer als zu langsam angesehen. Die meisten Forscher konzentrierten sich vielmehr auf Rasterisierungsansätze, da diese besser für Grafikkarten geeignet sind. Dabei leiden diese Ansätze entweder unter einer ungenügenden Qualität respektive Flexibilität. Die andere Alternative besteht darin, den Ray-Tracing-Algorithmus so zu beschleunigen, dass er sinnvoll für Visualisierungsanwendungen benutzt werden kann. Seit der Verfügbarkeit moderner Grafikkarten hat die Forschung auf diesem Gebiet nachgelassen, obwohl selbst moderne GPUs immer noch Limitierungen, wie beispielsweise der begrenzte Grafikkartenspeicher oder das umständliche Programmiermodell, enthalten. Die beiden in dieser Arbeit vorgestellten Methoden sind deshalb vollständig softwarebasiert, da es sinnvoller erscheint, möglichst viele Optimierungen in Software zu realisieren, bevor eine Portierung auf Hardware erfolgt. Die erste Methode wird impliziter Kd-Baum genannt, eine hierarchische und räumliche Beschleunigungstruktur, die ursprünglich für die Generierung von Isoflächen reguläre Gitterdatensätze entwickelt wurde. In der Zwischenzeit unterstützt sie auch die semi-transparente Darstellung, die Darstellung von zeitabhängigen Datensätzen und wurde erfolgreich für andere Anwendungen eingesetzt. Der zweite Algorithmus benutzt so genannte Plücker-Koordinaten, welche die Implementierung eines schnellen inkrementellen Traversierers für Datensätze erlauben, deren Primitive Tetraeder beziehungsweise Hexaeder sind. Beide Algorithmen wurden wesentlich optimiert, um eine interaktive Bildgenerierung volumetrischer Daten zu ermöglichen und stellen deshalb einen wichtigen Beitrag hin zu einem flexiblen und interaktiven Volumen-Ray-Tracing-System dar.Volume rendering is one of the most demanding and interesting topics among scientific visualization. Applications include medical examinations, simulation of physical processes, and visual art. Most of these applications demand interactivity with respect to the viewing and visualization parameters. The ray tracing algorithm, although inherently simulating light interaction with participating media, was always considered too slow. Instead, most researchers followed object-order algorithms better suited for graphics adapters, although such approaches often suffer either from low quality or lack of flexibility. Another alternative is to speed up the ray tracing algorithm to make it competitive for volumetric visualization tasks. Since the advent of modern graphic adapters, research in this area had somehow ceased, although some limitations of GPUs, e.g. limited graphics board memory and tedious programming model, are still a problem. The two methods discussed in this thesis are therefore purely software-based since it is believed that software implementations allow for a far better optimization process before porting algorithms to hardware. The first method is called implicit kd-tree, which is a hierarchical spatial acceleration structure originally developed for iso-surface rendering of regular data sets that now supports semi-transparent rendering, time-dependent data visualization, and is even used in non volume-rendering applications. The second algorithm uses so-called Plücker coordinates, providing a fast incremental traversal for data sets consisting of tetrahedral or hexahedral primitives. Both algorithms are highly optimized to support interactive rendering of volumetric data sets and are therefore major contributions towards a flexible and interactive volume ray tracing framework

    Mesh adaptation for high-order flow simulations

    Get PDF
    Mesh adaptation has only been considered for high-order flow simulations in recent years and many techniques are still to be made more robust and efficient with curvilinear meshes required by these high-order methods. This thesis covers the developments made to improve the mesh generation and adaptation capabilities of the open-source spectral/hp element framework Nektar++ and its dedicated mesh utility NekMesh. This thesis first covers the generation of quality initial meshes typically required before an iterative adaptation procedure can be used. For optimal performance of the spectral/hp element method, quadrilateral and hexahedral meshes are preferred and two methods are presented to achieve this, either entirely or partially. The first method, inspired from cross field methods, solves a Laplace problem to obtain a guiding field from which a valid two-dimensional quadrilateral block decomposition can be automatically obtained. In turn, naturally curved meshes are generated. The second method takes advantage of the medial axis to generate structured partitions in the boundary layer region of three-dimensional domains. The method proves to be robust in generating hybrid high-order meshes with boundary layer aligned prismatic elements near boundaries and tetrahedral elements elsewhere. The thesis goes on to explore the adaptation of high-order meshes for the simulation of flows using a spectral/hp element formulation. First a new approach to moving meshes, referred to here as r-adaptation, based on a variational framework, is described. This new r-adaptation module is then enhanced by p-adaptation for the simulation of compressible inviscid flows with shocks. Where the flow is smooth, p-adaptation is used to benefit from the spectral convergence of the spectral/hp element methods. Where the flow is discontinuous, e.g. at shock waves, r-adaptation clusters nodes together to better capture these field discontinuities. The benefits of this dual, rp-adaptation approach are demonstrated through two-dimensional benchmark test cases.Open Acces
    corecore