886 research outputs found

    CFLCA: High Performance based Heart disease Prediction System using Fuzzy Learning with Neural Networks

    Get PDF
    Human Diseases are increasing rapidly in today’s generation mainly due to the life style of people like poor diet, lack of exercises, drugs and alcohol consumption etc. But the most spreading disease that is commonly around 80% of people death direct and indirectly heart disease basis. In future (approximately after 10 years) maximum number of people may expire cause of heart diseases. Due to these reasons, many of researchers providing enormous remedy, data analysis in various proposed technologies for diagnosing heart diseases with plenty of medical data which is related to heart disease. In field of Medicine regularly receives very wide range of medical data in the form of text, image, audio, video, signal pockets, etc. This database contains raw dataset which consist of inconsistent and redundant data. The health care system is no doubt very rich in aspect of storing data but at the same time very poor in fetching knowledge. Data mining (DM) methods can help in extracting a valuable knowledge by applying DM terminologies like clustering, regression, segmentation, classification etc. After the collection of data when the dataset becomes larger and more complex than data mining algorithms and clustering algorithms (D-Tree, Neural Networks, K-means, etc.) are used. To get accuracy and precision values improved with proposed method of Cognitive Fuzzy Learning based Clustering Algorithm (CFLCA) method. CFLCA methodology creates advanced meta indexing for n-dimensional unstructured data. The heart disease dataset used after data enrichment and feature engineering with UCI machine learning algorithm, attain high level accurate and prediction rate. Through this proposed CFLCA algorithm is having high accuracy, precision and recall values of data analysis for heart diseases detection

    Smart Detection of Cardiovascular Disease Using Gradient Descent Optimization

    Get PDF
    The Internet of Medical Things (IoMT) is the networking of health things or equipment that communicate data over the internet without the need for human involvement in the healthcare field. A large quantity of data is collected from numerous sensors in the health field, and it is all transferred and stored on the cloud. This data is growing bigger here all time, and it's becoming increasingly challenging to secure it on the cloud with real-time storage and computing. Data security problem can be addressed with the aid of machine algorithms and fog computing. For data security in IoMT gadgets correspondence in an intelligent fashion, an intelligent encryption algorithm (IEA) is proposed using blockchain technology in cloud based system framework (CBSF). It is applied on patient’s database to provide immutable security, tampering prevention and transaction transparency at the fog layer in IoMT.  The suggested expert system's results indicate that it is suitable for use in for the security. In the fog model, the blockchain technology approach also helps to address latency, centralization, and scalability difficulties

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    A Review on the Role of Nano-Communication in Future Healthcare Systems: A Big Data Analytics Perspective

    Get PDF
    This paper presents a first-time review of the open literature focused on the significance of big data generated within nano-sensors and nano-communication networks intended for future healthcare and biomedical applications. It is aimed towards the development of modern smart healthcare systems enabled with P4, i.e. predictive, preventive, personalized and participatory capabilities to perform diagnostics, monitoring, and treatment. The analytical capabilities that can be produced from the substantial amount of data gathered in such networks will aid in exploiting the practical intelligence and learning capabilities that could be further integrated with conventional medical and health data leading to more efficient decision making. We have also proposed a big data analytics framework for gathering intelligence, form the healthcare big data, required by futuristic smart healthcare to address relevant problems and exploit possible opportunities in future applications. Finally, the open challenges, future directions for researchers in the evolving healthcare domain, are presented

    Neural-Symbolic Ensemble Learning for early-stage prediction of critical state of Covid-19 patients

    Get PDF
    Recently, Artificial Intelligence (AI) and Machine Learning (ML) have been successfully applied to many domains of interest including medical diagnosis. Due to the availability of a large quantity of data, it is possible to build reliable AI systems that assist humans in making decisions. The recent Covid-19 pandemic quickly spread over the world causing serious health problems and severe economic and social damage. Computer scientists are actively working together with doctors on different ML models to diagnose Covid-19 patients using Computed Tomography (CT) scans and clinical data. In this work, we propose a neural-symbolic system that predicts if a Covid-19 patient arriving at the hospital will end in a critical condition. The proposed system relies on Deep 3D Convolutional Neural Networks (3D-CNNs) for analyzing lung CT scans of Covid-19 patients, Decision Trees (DTs) for predicting if a Covid-19 patient will eventually pass away by analyzing its clinical data, and a neural system that integrates the previous ones using Hierarchical Probabilistic Logic Programs (HPLPs). Predicting if a Covid-19 patient will end in a critical condition is useful for managing the limited number of intensive care at the hospital. Moreover, knowing early that a Covid-19 patient could end in serious conditions allows doctors to gain early knowledge on patients and provide special treatment to those predicted to finish in critical conditions. The proposed system, entitled Neural HPLP, obtains good performance in terms of area under the receiver operating characteristic and precision curves with values of about 0.96 for both metrics. Therefore, with Neural HPLP, it is possible not only to efficiently predict if Covid-19 patients will end in severe conditions but also possible to provide an explanation of the prediction. This makes Neural HPLP explainable, interpretable, and reliable. Graphical abstract Representation of Neural HPLP. From top to bottom, the two different types of data collected from the same patient and used in this project are represented. This data feeds the two different machine learning systems and the integration of the two systems using Hierarchical Probabilistic Logic Program
    • …
    corecore