286 research outputs found

    Is Neuro-Symbolic AI Meeting its Promise in Natural Language Processing? A Structured Review

    Full text link
    Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, with the aim of answering the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher promise scores. We find that systems where logic is compiled into the neural network lead to the most NeSy goals being satisfied, while other factors such as knowledge representation, or type of neural architecture do not exhibit a clear correlation with goals being met. We find many discrepancies in how reasoning is defined, specifically in relation to human level reasoning, which impact decisions about model architectures and drive conclusions which are not always consistent across studies. Hence we advocate for a more methodical approach to the application of theories of human reasoning as well as the development of appropriate benchmarks, which we hope can lead to a better understanding of progress in the field. We make our data and code available on github for further analysis.Comment: Surve

    A Review of Natural Language Processing Research

    Get PDF
    Natural language processing (NLP) is a theory-motivated range of computational techniques for the automatic analysis and representation of human language. NLP research has evolved from the era of punch cards and batch processing (in which the analysis of a sentence could take up to 7 minutes) to the era of Google and the likes of it (in which millions of webpages can be processed in less than a second). This review paper draws on recent developments in NLP research to look at the past, present, and future of NLP technology in a new light. Borrowing the paradigm of ‘jumping curves’ from the field of business management and marketing prediction, this survey article reinterprets the evolution of NLP research as the intersection of three overlapping curves-namely Syntactics, Semantics, and Pragmatics Curves- which will eventually lead NLP research to evolve into natural language understanding

    A Defense of Pure Connectionism

    Full text link
    Connectionism is an approach to neural-networks-based cognitive modeling that encompasses the recent deep learning movement in artificial intelligence. It came of age in the 1980s, with its roots in cybernetics and earlier attempts to model the brain as a system of simple parallel processors. Connectionist models center on statistical inference within neural networks with empirically learnable parameters, which can be represented as graphical models. More recent approaches focus on learning and inference within hierarchical generative models. Contra influential and ongoing critiques, I argue in this dissertation that the connectionist approach to cognitive science possesses in principle (and, as is becoming increasingly clear, in practice) the resources to model even the most rich and distinctly human cognitive capacities, such as abstract, conceptual thought and natural language comprehension and production. Consonant with much previous philosophical work on connectionism, I argue that a core principle—that proximal representations in a vector space have similar semantic values—is the key to a successful connectionist account of the systematicity and productivity of thought, language, and other core cognitive phenomena. My work here differs from preceding work in philosophy in several respects: (1) I compare a wide variety of connectionist responses to the systematicity challenge and isolate two main strands that are both historically important and reflected in ongoing work today: (a) vector symbolic architectures and (b) (compositional) vector space semantic models; (2) I consider very recent applications of these approaches, including their deployment on large-scale machine learning tasks such as machine translation; (3) I argue, again on the basis mostly of recent developments, for a continuity in representation and processing across natural language, image processing and other domains; (4) I explicitly link broad, abstract features of connectionist representation to recent proposals in cognitive science similar in spirit, such as hierarchical Bayesian and free energy minimization approaches, and offer a single rebuttal of criticisms of these related paradigms; (5) I critique recent alternative proposals that argue for a hybrid Classical (i.e. serial symbolic)/statistical model of mind; (6) I argue that defending the most plausible form of a connectionist cognitive architecture requires rethinking certain distinctions that have figured prominently in the history of the philosophy of mind and language, such as that between word- and phrase-level semantic content, and between inference and association

    Distributed Representations for Compositional Semantics

    Full text link
    The mathematical representation of semantics is a key issue for Natural Language Processing (NLP). A lot of research has been devoted to finding ways of representing the semantics of individual words in vector spaces. Distributional approaches --- meaning distributed representations that exploit co-occurrence statistics of large corpora --- have proved popular and successful across a number of tasks. However, natural language usually comes in structures beyond the word level, with meaning arising not only from the individual words but also the structure they are contained in at the phrasal or sentential level. Modelling the compositional process by which the meaning of an utterance arises from the meaning of its parts is an equally fundamental task of NLP. This dissertation explores methods for learning distributed semantic representations and models for composing these into representations for larger linguistic units. Our underlying hypothesis is that neural models are a suitable vehicle for learning semantically rich representations and that such representations in turn are suitable vehicles for solving important tasks in natural language processing. The contribution of this thesis is a thorough evaluation of our hypothesis, as part of which we introduce several new approaches to representation learning and compositional semantics, as well as multiple state-of-the-art models which apply distributed semantic representations to various tasks in NLP.Comment: DPhil Thesis, University of Oxford, Submitted and accepted in 201

    Frequency vs. Association for Constraint Selection in Usage-Based Construction Grammar

    Get PDF
    A usage-based Construction Grammar (CxG) posits that slot-constraints generalize from common exemplar constructions. But what is the best model of constraint generalization? This paper evaluates competing frequency-based and association-based models across eight languages using a metric derived from the Minimum Description Length paradigm. The experiments show that association-based models produce better generalizations across all languages by a significant margin

    Natural language software registry (second edition)

    Get PDF

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances
    • …
    corecore