52 research outputs found

    Interactive Explanations by Conflict Resolution via Argumentative Exchanges

    Full text link
    As the field of explainable AI (XAI) is maturing, calls for interactive explanations for (the outputs of) AI models are growing, but the state-of-the-art predominantly focuses on static explanations. In this paper, we focus instead on interactive explanations framed as conflict resolution between agents (i.e. AI models and/or humans) by leveraging on computational argumentation. Specifically, we define Argumentative eXchanges (AXs) for dynamically sharing, in multi-agent systems, information harboured in individual agents' quantitative bipolar argumentation frameworks towards resolving conflicts amongst the agents. We then deploy AXs in the XAI setting in which a machine and a human interact about the machine's predictions. We identify and assess several theoretical properties characterising AXs that are suitable for XAI. Finally, we instantiate AXs for XAI by defining various agent behaviours, e.g. capturing counterfactual patterns of reasoning in machines and highlighting the effects of cognitive biases in humans. We show experimentally (in a simulated environment) the comparative advantages of these behaviours in terms of conflict resolution, and show that the strongest argument may not always be the most effective.Comment: 14 pages, 2 figure

    SpArX: sparse argumentative explanations for neural networks

    Get PDF
    Neural networks (NNs) have various applications in AI, but explaining their decisions remains challenging. Existing approaches often focus on explaining how changing individual inputs affects NNs’ outputs. However, an explanation that is consistent with the input-output behaviour of an NN is not necessarily faithful to the actual mechanics thereof. In this paper, we exploit relationships between multi-layer perceptrons (MLPs) and quantitative argumentation frameworks (QAFs) to create argumentative explanations for the mechanics of MLPs. Our SpArX method first sparsifies the MLP while maintaining as much of the original structure as possible. It then translates the sparse MLP into an equivalent QAF to shed light on the underlying decision process of the MLP, producing global and/or local explanations. We demonstrate experimentally that SpArX can give more faithful explanations than existing approaches, while simultaneously providing deeper insights into the actual reasoning process of MLPs

    Identifying Reasons for Bias: An Argumentation-Based Approach

    Full text link
    As algorithmic decision-making systems become more prevalent in society, ensuring the fairness of these systems is becoming increasingly important. Whilst there has been substantial research in building fair algorithmic decision-making systems, the majority of these methods require access to the training data, including personal characteristics, and are not transparent regarding which individuals are classified unfairly. In this paper, we propose a novel model-agnostic argumentation-based method to determine why an individual is classified differently in comparison to similar individuals. Our method uses a quantitative argumentation framework to represent attribute-value pairs of an individual and of those similar to them, and uses a well-known semantics to identify the attribute-value pairs in the individual contributing most to their different classification. We evaluate our method on two datasets commonly used in the fairness literature and illustrate its effectiveness in the identification of bias.Comment: 10 page

    Transparent assessment of information quality of online reviews using formal argumentation theory

    Get PDF
    Review scores collect users’ opinions in a simple and intuitive manner. However, review scores are also easily manipulable, hence they are often accompanied by explanations. A substantial amount of research has been devoted to ascertaining the quality of reviews, to identify the most useful and authentic scores through explanation analysis. In this paper, we advance the state of the art in review quality analysis. We introduce a rating system to identify review arguments and to define an appropriate weighted semantics through formal argumentation theory. We introduce an algorithm to construct a corresponding graph, based on a selection of weighted arguments, their semantic distance, and the supported ratings. We also provide an algorithm to identify the model of such an argumentation graph, maximizing the overall weight of the admitted nodes and edges. We evaluate these contributions on the Amazon review dataset by McAuley et al. (2015), by comparing the results of our argumentation assessment with the upvotes received by the reviews. Also, we deepen the evaluation by crowdsourcing a multidimensional assessment of reviews and comparing it to the argumentation assessment. Lastly, we perform a user study to evaluate the explainability of our method, i.e., to test whether the automated method we use to assess reviews is understandable by humans. Our method achieves two goals: (1) it identifies reviews that are considered useful, comprehensible, and complete by online users, and does so in an unsupervised manner, and (2) it provides an explanation of quality assessments

    Formalising Human Mental Workload as a Defeasible Computational Concept

    Get PDF
    Human mental workload has gained importance, in the last few decades, as a fundamental design concept in human-computer interaction. It can be intuitively defined as the amount of mental work necessary for a person to complete a task over a given period of time. For people interacting with interfaces, computers and technological devices in general, the construct plays an important role. At a low level, while processing information, often people feel annoyed and frustrated; at higher level, mental workload is critical and dangerous as it leads to confusion, it decreases the performance of information processing and it increases the chances of errors and mistakes. It is extensively documented that either mental overload or underload negatively affect performance. Hence, designers and practitioners who are ultimately interested in system or human performance need answers about operator workload at all stages of system design and operation. At an early system design phase, designers require some explicit model to predict the mental workload imposed by their technologies on end-users so that alternative system designs can be evaluated. However, human mental workload is a multifaceted and complex construct mainly applied in cognitive sciences. A plethora of ad-hoc definitions can be found in the literature. Generally, it is not an elementary property, rather it emerges from the interaction between the requirements of a task, the circumstances under which it is performed and the skills, behaviours and perceptions of the operator. Although measuring mental workload has advantages in interaction and interface design, its formalisation as an operational and computational construct has not sufficiently been addressed. Many researchers agree that too many ad-hoc models are present in the literature and that they are applied subjectively by mental workload designers thereby limiting their application in different contexts and making comparison across different models difficult. This thesis introduces a novel computational framework for representing and assessing human mental workload based on defeasible reasoning. The starting point is the investigation of the nature of human mental workload that appears to be a defeasible phenomenon. A defeasible concept is a concept built upon a set of arguments that can be defeated by adding additional arguments. The word ‘defeasible’ is inherited from defeasible reasoning, a form of reasoning built upon reasons that can be defeated. It is also known as non-monotonic reasoning because of the technical property (non-monotonicity) of the logical formalisms that are aimed at modelling defeasible reasoning activity. Here, a conclusion or claim, derived from the application of previous knowledge, can be retracted in the light of new evidence. Formally, state-of-the-art defeasible reasoning models are implemented employing argumentation theory, a multi-disciplinary paradigm that incorporates elements of philosophy, psychology and sociology. It systematically studies how arguments can be built, sustained or discarded in a reasoning process, and it investigates the validity of their conclusions. Since mental workload can be seen as a defeasible phenomenon, formal defeasible argumentation theory may have a positive impact in its representation and assessment. Mental workload can be captured, analysed, and measured in ways that increase its understanding allowing its use for practical activities. The research question investigated here is whether defeasible argumentation theory can enhance the representation of the construct of mental workload and improve the quality of its assessment in the field of human-computer interaction. In order to answer this question, recurrent knowledge and evidence employed in state-of-the-art mental workload measurement techniques have been reviewed in the first place as well as their defeasible and non-monotonic properties. Secondly, an investigation of the state-of-the-art computational techniques for implementing defeasible reasoning has been carried out. This allowed the design of a modular framework for mental workload representation and assessment. The proposed solution has been evaluated by comparing the properties of sensitivity, diagnosticity and validity of the assessments produced by two instances of the framework against the ones produced by two well known subjective mental workload assessments techniques (the Nasa Task Load Index and the Workload Profile) in the context of human-web interaction. In detail, through an empirical user study, it has been firstly demonstrated how these two state-of-the-art techniques can be translated into two particular instances of the framework while still maintaining the same validity. In other words, the indexes of mental workload inferred by the two original instruments, and the ones generated by their corresponding translations (instances of the framework) showed a positive and nearly perfect statistical correlation. Additionally, a new defeasible instance built with the framework showed a better sensitivity and a higher diagnosticity capacity than the two selected state-of-the art techniques. The former showed a higher convergent validity with the latter techniques, but a better concurrent validity with performance measures. The new defeasible instance generated indexes of mental workload that better correlated with the objective time for task completion compared to the two selected instruments. These findings support the research question thereby demonstrating how defeasible argumentation theory can be successfully adopted to support the representation of mental workload and to enhance the quality of its assessments. The main contribution of this thesis is the presentation of a methodology, developed as a formal modular framework, to represent mental workload as a defeasible computational concept and to assess it as a numerical usable index. This research contributes to the body of knowledge by providing a modular framework built upon defeasible reasoning and formalised through argumentation theory in which workload can be optimally measured, analysed, explained and applied in different contexts

    Extracting dialogical explanations for review aggregations with argumentative dialogical agents

    Get PDF
    The aggregation of online reviews is fast becoming the chosen method of quality control for users in various domains, from retail to entertainment. Consequently, fair, thorough and explainable aggregation of reviews is increasingly sought-after. We consider the movie review domain, and in particular Rotten Tomatoes' ubiquitous (and arguably over-simplified) aggregation method, the Tomatometer Score (TS). For a movie, this amounts to the percentage of critics giving the movie a positive review. We define a novel form of argumentative dialogical agent (ADA) for explaining the reasoning within the reviews. ADA integrates: 1.) NLP with reviews to extract a Quantitative Bipolar Argumentation Framework (QBAF) for any chosen movie to provide the underlying structure of explanations, and 2.) gradual semantics for QBAFs for deriving a dialectical strength measure for movies, as an alternative to the TS, satisfying desirable properties for obtaining explanations. We evaluate ADA using some prominent NLP methods and gradual semantics for QBAFs. We show that they provide a dialectical strength which is comparable with the TS, while at the same time being able to provide dialogical explanations of why a movie obtained its strength via interactions between the user and ADA

    Computational Argumentation for the Automatic Analysis of Argumentative Discourse and Human Persuasion

    Full text link
    Tesis por compendio[ES] La argumentación computacional es el área de investigación que estudia y analiza el uso de distintas técnicas y algoritmos que aproximan el razonamiento argumentativo humano desde un punto de vista computacional. En esta tesis doctoral se estudia el uso de distintas técnicas propuestas bajo el marco de la argumentación computacional para realizar un análisis automático del discurso argumentativo, y para desarrollar técnicas de persuasión computacional basadas en argumentos. Con estos objetivos, en primer lugar se presenta una completa revisión del estado del arte y se propone una clasificación de los trabajos existentes en el área de la argumentación computacional. Esta revisión nos permite contextualizar y entender la investigación previa de forma más clara desde la perspectiva humana del razonamiento argumentativo, así como identificar las principales limitaciones y futuras tendencias de la investigación realizada en argumentación computacional. En segundo lugar, con el objetivo de solucionar algunas de estas limitaciones, se ha creado y descrito un nuevo conjunto de datos que permite abordar nuevos retos y investigar problemas previamente inabordables (e.g., evaluación automática de debates orales). Conjuntamente con estos datos, se propone un nuevo sistema para la extracción automática de argumentos y se realiza el análisis comparativo de distintas técnicas para esta misma tarea. Además, se propone un nuevo algoritmo para la evaluación automática de debates argumentativos y se prueba con debates humanos reales. Finalmente, en tercer lugar se presentan una serie de estudios y propuestas para mejorar la capacidad persuasiva de sistemas de argumentación computacionales en la interacción con usuarios humanos. De esta forma, en esta tesis se presentan avances en cada una de las partes principales del proceso de argumentación computacional (i.e., extracción automática de argumentos, representación del conocimiento y razonamiento basados en argumentos, e interacción humano-computador basada en argumentos), así como se proponen algunos de los cimientos esenciales para el análisis automático completo de discursos argumentativos en lenguaje natural.[CA] L'argumentació computacional és l'àrea de recerca que estudia i analitza l'ús de distintes tècniques i algoritmes que aproximen el raonament argumentatiu humà des d'un punt de vista computacional. En aquesta tesi doctoral s'estudia l'ús de distintes tècniques proposades sota el marc de l'argumentació computacional per a realitzar una anàlisi automàtic del discurs argumentatiu, i per a desenvolupar tècniques de persuasió computacional basades en arguments. Amb aquestos objectius, en primer lloc es presenta una completa revisió de l'estat de l'art i es proposa una classificació dels treballs existents en l'àrea de l'argumentació computacional. Aquesta revisió permet contextualitzar i entendre la investigació previa de forma més clara des de la perspectiva humana del raonament argumentatiu, així com identificar les principals limitacions i futures tendències de la investigació realitzada en argumentació computacional. En segon lloc, amb l'objectiu de sol⋅\cdotlucionar algunes d'aquestes limitacions, hem creat i descrit un nou conjunt de dades que ens permet abordar nous reptes i investigar problemes prèviament inabordables (e.g., avaluació automàtica de debats orals). Conjuntament amb aquestes dades, es proposa un nou sistema per a l'extracció d'arguments i es realitza l'anàlisi comparativa de distintes tècniques per a aquesta mateixa tasca. A més a més, es proposa un nou algoritme per a l'avaluació automàtica de debats argumentatius i es prova amb debats humans reals. Finalment, en tercer lloc es presenten una sèrie d'estudis i propostes per a millorar la capacitat persuasiva de sistemes d'argumentació computacionals en la interacció amb usuaris humans. D'aquesta forma, en aquesta tesi es presenten avanços en cada una de les parts principals del procés d'argumentació computacional (i.e., l'extracció automàtica d'arguments, la representació del coneixement i raonament basats en arguments, i la interacció humà-computador basada en arguments), així com es proposen alguns dels fonaments essencials per a l'anàlisi automàtica completa de discursos argumentatius en llenguatge natural.[EN] Computational argumentation is the area of research that studies and analyses the use of different techniques and algorithms that approximate human argumentative reasoning from a computational viewpoint. In this doctoral thesis we study the use of different techniques proposed under the framework of computational argumentation to perform an automatic analysis of argumentative discourse, and to develop argument-based computational persuasion techniques. With these objectives in mind, we first present a complete review of the state of the art and propose a classification of existing works in the area of computational argumentation. This review allows us to contextualise and understand the previous research more clearly from the human perspective of argumentative reasoning, and to identify the main limitations and future trends of the research done in computational argumentation. Secondly, to overcome some of these limitations, we create and describe a new corpus that allows us to address new challenges and investigate on previously unexplored problems (e.g., automatic evaluation of spoken debates). In conjunction with this data, a new system for argument mining is proposed and a comparative analysis of different techniques for this same task is carried out. In addition, we propose a new algorithm for the automatic evaluation of argumentative debates and we evaluate it with real human debates. Thirdly, a series of studies and proposals are presented to improve the persuasiveness of computational argumentation systems in the interaction with human users. In this way, this thesis presents advances in each of the main parts of the computational argumentation process (i.e., argument mining, argument-based knowledge representation and reasoning, and argument-based human-computer interaction), and proposes some of the essential foundations for the complete automatic analysis of natural language argumentative discourses.This thesis has been partially supported by the Generalitat Valenciana project PROME- TEO/2018/002 and by the Spanish Government projects TIN2017-89156-R and PID2020- 113416RB-I00.Ruiz Dolz, R. (2023). Computational Argumentation for the Automatic Analysis of Argumentative Discourse and Human Persuasion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194806Compendi

    Explainable NLP for Human-AI Collaboration

    Get PDF
    With more data and computing resources available these days, we have seen many novel Natural Language Processing (NLP) models breaking one performance record after another. Some of them even outperform human performance in some specific tasks. Meanwhile, many researchers have revealed weaknesses and irrationality of such models, e.g., having biases against some sub-populations, producing inconsistent predictions, and failing to work effectively in the wild due to overfitting. Therefore, in real applications, especially in high-stakes domains, humans cannot rely carelessly on predictions of NLP models, but they need to work closely with the models to ensure that every final decision made is accurate and benevolent. In this thesis, we devise and utilize explainable NLP techniques to support human-AI collaboration using text classification as a target task. Overall, our contributions can be divided into three main parts. First, we study how useful explanations are for humans according to three different purposes: revealing model behavior, justifying model predictions, and helping humans investigate uncertain predictions. Second, we propose a framework that enables humans to debug simple deep text classifiers informed by model explanations. Third, leveraging on computational argumentation, we develop a novel local explanation method for pattern-based logistic regression models that align better with human judgements and effectively assist humans to perform an unfamiliar task in real-time. Altogether, our contributions are paving the way towards the synergy of profound knowledge of human users and the tireless power of AI machines.Open Acces
    • …
    corecore