4,272 research outputs found

    Automated Extraction of Fragments of Bayesian Networks from Textual Sources

    Get PDF
    Mining large amounts of unstructured data for extracting meaningful, accurate, and actionable information, is at the core of a variety of research disciplines including computer science, mathematical and statistical modelling, as well as knowledge engineering. In particular, the ability to model complex scenarios based on unstructured datasets is an important step towards an integrated and accurate knowledge extraction approach. This would provide a significant insight in any decision making process driven by Big Data analysis activities. However, there are multiple challenges that need to be fully addressed in order to achieve this, especially when large and unstructured data sets are considered. In this article we propose and analyse a novel method to extract and build fragments of Bayesian networks (BNs) from unstructured large data sources. The results of our analysis show the potential of our approach, and highlight its accuracy and efficiency. More specifically, when compared with existing approaches, our method addresses specific challenges posed by the automated extraction of BNs with extensive applications to unstructured and highly dynamic data sources. The aim of this work is to advance the current state-of-the-art approaches to the automated extraction of BNs from unstructured datasets, which provide a versatile and powerful modelling framework to facilitate knowledge discovery in complex decision scenarios

    Doctor of Philosophy

    Get PDF
    dissertationDisease-specific ontologies, designed to structure and represent the medical knowledge about disease etiology, diagnosis, treatment, and prognosis, are essential for many advanced applications, such as predictive modeling, cohort identification, and clinical decision support. However, manually building disease-specific ontologies is very labor-intensive, especially in the process of knowledge acquisition. On the other hand, medical knowledge has been documented in a variety of biomedical knowledge resources, such as textbook, clinical guidelines, research articles, and clinical data repositories, which offers a great opportunity for an automated knowledge acquisition. In this dissertation, we aim to facilitate the large-scale development of disease-specific ontologies through automated extraction of disease-specific vocabularies from existing biomedical knowledge resources. Three separate studies presented in this dissertation explored both manual and automated vocabulary extraction. The first study addresses the question of whether disease-specific reference vocabularies derived from manual concept acquisition can achieve a near-saturated coverage (or near the greatest possible amount of disease-pertinent concepts) by using a small number of literature sources. Using a general-purpose, manual acquisition approach we developed, this study concludes that a small number of expert-curated biomedical literature resources can prove sufficient for acquiring near-saturated disease-specific vocabularies. The second and third studies introduce automated techniques for extracting disease-specific vocabularies from both MEDLINE citations (title and abstract) and a clinical data repository. In the second study, we developed and assessed a pipeline-based system which extracts disease-specific treatments from PubMed citations. The system has achieved a mean precision of 0.8 for the top 100 extracted treatment concepts. In the third study, we applied classification models to reduce irrelevant disease-concepts associations extracted from MEDLINE citations and electronic medical records. This study suggested the combination of measures of relevance from disparate sources to improve the identification of true-relevant concepts through classification and also demonstrated the generalizability of the studied classification model to new diseases. With the studies, we concluded that existing biomedical knowledge resources are valuable sources for extracting disease-concept associations, from which classification based on statistical measures of relevance could assist a semi-automated generation of disease-specific vocabularies
    • …
    corecore