581 research outputs found

    Taxonomy Induction using Hypernym Subsequences

    Get PDF
    We propose a novel, semi-supervised approach towards domain taxonomy induction from an input vocabulary of seed terms. Unlike all previous approaches, which typically extract direct hypernym edges for terms, our approach utilizes a novel probabilistic framework to extract hypernym subsequences. Taxonomy induction from extracted subsequences is cast as an instance of the minimumcost flow problem on a carefully designed directed graph. Through experiments, we demonstrate that our approach outperforms stateof- the-art taxonomy induction approaches across four languages. Importantly, we also show that our approach is robust to the presence of noise in the input vocabulary. To the best of our knowledge, no previous approaches have been empirically proven to manifest noise-robustness in the input vocabulary

    Learning Semantic Text Similarity to rank Hypernyms of Financial Terms

    Full text link
    Over the years, there has been a paradigm shift in how users access financial services. With the advancement of digitalization more users have been preferring the online mode of performing financial activities. This has led to the generation of a huge volume of financial content. Most investors prefer to go through these contents before making decisions. Every industry has terms that are specific to the domain it operates in. Banking and Financial Services are not an exception to this. In order to fully comprehend these contents, one needs to have a thorough understanding of the financial terms. Getting a basic idea about a term becomes easy when it is explained with the help of the broad category to which it belongs. This broad category is referred to as hypernym. For example, "bond" is a hypernym of the financial term "alternative debenture". In this paper, we propose a system capable of extracting and ranking hypernyms for a given financial term. The system has been trained with financial text corpora obtained from various sources like DBpedia [4], Investopedia, Financial Industry Business Ontology (FIBO), prospectus and so on. Embeddings of these terms have been extracted using FinBERT [3], FinISH [1] and fine-tuned using SentenceBERT [54]. A novel approach has been used to augment the training set with negative samples. It uses the hierarchy present in FIBO. Finally, we benchmark the system performance with that of the existing ones. We establish that it performs better than the existing ones and is also scalable.Comment: Our code base: https://github.com/sohomghosh/FinSim_Financial_Hypernym_detectio

    MIsA : multilingual 'IsA' extraction from Corpora

    Get PDF

    ExTaSem! Extending, Taxonomizing and Semantifying Domain Terminologies

    Get PDF
    We introduce EXTASEM!, a novel approach for the automatic learning of lexical taxonomies from domain terminologies. First, we exploit a very large semantic network to collect thousands of in-domain textual definitions. Second, we extract (hyponym, hypernym) pairs from each definition with a CRF-based algorithm trained on manuallyvalidated data. Finally, we introduce a graph induction procedure which constructs a full-fledged taxonomy where each edge is weighted according to its domain pertinence. EXTASEM! achieves state-of-the-art results in the following taxonomy evaluation experiments: (1) Hypernym discovery, (2) Reconstructing gold standard taxonomies, and (3) Taxonomy quality according to structural measures. We release weighted taxonomies for six domains for the use and scrutiny of the communit

    Using WordNet for Building WordNets

    Full text link
    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.Comment: 8 pages, postscript file. In workshop on Usage of WordNet in NL

    empathi: An ontology for Emergency Managing and Planning about Hazard Crisis

    Full text link
    In the domain of emergency management during hazard crises, having sufficient situational awareness information is critical. It requires capturing and integrating information from sources such as satellite images, local sensors and social media content generated by local people. A bold obstacle to capturing, representing and integrating such heterogeneous and diverse information is lack of a proper ontology which properly conceptualizes this domain, aggregates and unifies datasets. Thus, in this paper, we introduce empathi ontology which conceptualizes the core concepts concerning with the domain of emergency managing and planning of hazard crises. Although empathi has a coarse-grained view, it considers the necessary concepts and relations being essential in this domain. This ontology is available at https://w3id.org/empathi/

    Big data warehouse framework for smart revenue management

    Get PDF
    Revenue Management’s most cited definitions is probably “to sell the right accommodation to the right customer, at the right time and the right price, with optimal satisfaction for customers and hoteliers”. Smart Revenue Management (SRM) is a project, which aims the development of smart automatic techniques for an efficient optimization of occupancy and rates of hotel accommodations, commonly referred to, as revenue management. One of the objectives of this project is to demonstrate that the collection of Big Data, followed by an appropriate assembly of functionalities, will make possible to generate a Data Warehouse necessary to produce high quality business intelligence and analytics. This will be achieved through the collection of data extracted from a variety of sources, including from the web. This paper proposes a three stage framework to develop the Big Data Warehouse for the SRM. Namely, the compilation of all available information, in the present case, it was focus only the extraction of information from the web by a web crawler – raw data. The storing of that raw data in a primary NoSQL database, and from that data the conception of a set of functionalities, rules, principles and semantics to select, combine and store in a secondary relational database the meaningful information for the Revenue Management (Big Data Warehouse). The last stage will be the principal focus of the paper. In this context, clues will also be giving how to compile information for Business Intelligence. All these functionalities contribute to a holistic framework that, in the future, will make it possible to anticipate customers and competitor’s behavior, fundamental elements to fulfill the Revenue Managemen

    Link Prediction for Free-Format Text

    Get PDF
    • …
    corecore