1,402 research outputs found

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    LEARNFCA: A FUZZY FCA AND PROBABILITY BASED APPROACH FOR LEARNING AND CLASSIFICATION

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Jitender Deogu

    On Fuzzy Concepts

    Get PDF
    In this paper we try to combine two approaches. One is the theory of knowledge graphs in which concepts are represented by graphs. The other is the axiomatic theory of fuzzy sets (AFS). The discussion will focus on the idea of fuzzy concept. It will be argued that the fuzziness of a concept in natural language is mainly due to the difference in interpretation that people give to a certain word. As different interpretations lead to different knowledge graphs, the notion of fuzzy concept should be describable in terms of sets of graphs. This leads to a natural introduction of membership values for elements of graphs. Using these membership values we apply AFS theory as well as an alternative approach to calculate fuzzy decision trees, that can be used to determine the most relevant elements of a concept

    Adaptive Learning and Mining for Data Streams and Frequent Patterns

    Get PDF
    Aquesta tesi està dedicada al disseny d'algorismes de mineria de dades per fluxos de dades que evolucionen en el temps i per l'extracció d'arbres freqüents tancats. Primer ens ocupem de cadascuna d'aquestes tasques per separat i, a continuació, ens ocupem d'elles conjuntament, desenvolupant mètodes de classificació de fluxos de dades que contenen elements que són arbres. En el model de flux de dades, les dades arriben a gran velocitat, i els algorismes que els han de processar tenen limitacions estrictes de temps i espai. En la primera part d'aquesta tesi proposem i mostrem un marc per desenvolupar algorismes que aprenen de forma adaptativa dels fluxos de dades que canvien en el temps. Els nostres mètodes es basen en l'ús de mòduls detectors de canvi i estimadors en els llocs correctes. Proposem ADWIN, un algorisme de finestra lliscant adaptativa, per la detecció de canvi i manteniment d'estadístiques actualitzades, i proposem utilitzar-lo com a caixa negra substituint els comptadors en algorismes inicialment no dissenyats per a dades que varien en el temps. Com ADWIN té garanties teòriques de funcionament, això obre la possibilitat d'ampliar aquestes garanties als algorismes d'aprenentatge i de mineria de dades que l'usin. Provem la nostre metodologia amb diversos mètodes d'aprenentatge com el Naïve Bayes, partició, arbres de decisió i conjunt de classificadors. Construïm un marc experimental per fer mineria amb fluxos de dades que varien en el temps, basat en el programari MOA, similar al programari WEKA, de manera que sigui fàcil pels investigadors de realitzar-hi proves experimentals. Els arbres són grafs acíclics connectats i són estudiats com vincles en molts casos. En la segona part d'aquesta tesi, descrivim un estudi formal dels arbres des del punt de vista de mineria de dades basada en tancats. A més, presentem algorismes eficients per fer tests de subarbres i per fer mineria d'arbres freqüents tancats ordenats i no ordenats. S'inclou una anàlisi de l'extracció de regles d'associació de confiança plena dels conjunts d'arbres tancats, on hem trobat un fenomen interessant: les regles que la seva contrapart proposicional és no trivial, són sempre certes en els arbres a causa de la seva peculiar combinatòria. I finalment, usant aquests resultats en fluxos de dades evolutius i la mineria d'arbres tancats freqüents, hem presentat algorismes d'alt rendiment per fer mineria d'arbres freqüents tancats de manera adaptativa en fluxos de dades que evolucionen en el temps. Introduïm una metodologia general per identificar patrons tancats en un flux de dades, utilitzant la Teoria de Reticles de Galois. Usant aquesta metodologia, desenvolupem un algorisme incremental, un basat en finestra lliscant, i finalment un que troba arbres freqüents tancats de manera adaptativa en fluxos de dades. Finalment usem aquests mètodes per a desenvolupar mètodes de classificació per a fluxos de dades d'arbres.This thesis is devoted to the design of data mining algorithms for evolving data streams and for the extraction of closed frequent trees. First, we deal with each of these tasks separately, and then we deal with them together, developing classification methods for data streams containing items that are trees. In the data stream model, data arrive at high speed, and the algorithms that must process them have very strict constraints of space and time. In the first part of this thesis we propose and illustrate a framework for developing algorithms that can adaptively learn from data streams that change over time. Our methods are based on using change detectors and estimator modules at the right places. We propose an adaptive sliding window algorithm ADWIN for detecting change and keeping updated statistics from a data stream, and use it as a black-box in place or counters or accumulators in algorithms initially not designed for drifting data. Since ADWIN has rigorous performance guarantees, this opens the possibility of extending such guarantees to learning and mining algorithms. We test our methodology with several learning methods as Naïve Bayes, clustering, decision trees and ensemble methods. We build an experimental framework for data stream mining with concept drift, based on the MOA framework, similar to WEKA, so that it will be easy for researchers to run experimental data stream benchmarks. Trees are connected acyclic graphs and they are studied as link-based structures in many cases. In the second part of this thesis, we describe a rather formal study of trees from the point of view of closure-based mining. Moreover, we present efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. We include an analysis of the extraction of association rules of full confidence out of the closed sets of trees, and we have found there an interesting phenomenon: rules whose propositional counterpart is nontrivial are, however, always implicitly true in trees due to the peculiar combinatorics of the structures. And finally, using these results on evolving data streams mining and closed frequent tree mining, we present high performance algorithms for mining closed unlabeled rooted trees adaptively from data streams that change over time. We introduce a general methodology to identify closed patterns in a data stream, using Galois Lattice Theory. Using this methodology, we then develop an incremental one, a sliding-window based one, and finally one that mines closed trees adaptively from data streams. We use these methods to develop classification methods for tree data streams.Postprint (published version

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Workshop NotesInternational Workshop ``What can FCA do for Artificial Intelligence?'' (FCA4AI 2015)

    Get PDF
    International audienceThis volume includes the proceedings of the fourth edition of the FCA4AI --What can FCA do for Artificial Intelligence?-- Workshop co-located with the IJCAI 2015 Conference in Buenos Aires (Argentina). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification. FCA allows one to build a concept lattice and a system of dependencies (implications) which can be used for many AI needs, e.g. knowledge discovery, learning, knowledge representation, reasoning, ontology engineering, as well as information retrieval and text processing. There are many ``natural links'' between FCA and AI, and the present workshop is organized for discussing about these links and more generally for improving the links between knowledge discovery based on FCA and knowledge management in artificial intelligence

    Formal Concept Analysis Applications in Bioinformatics

    Get PDF
    Bioinformatics is an important field that seeks to solve biological problems with the help of computation. One specific field in bioinformatics is that of genomics, the study of genes and their functions. Genomics can provide valuable analysis as to the interaction between how genes interact with their environment. One such way to measure the interaction is through gene expression data, which determines whether (and how much) a certain gene activates in a situation. Analyzing this data can be critical for predicting diseases or other biological reactions. One method used for analysis is Formal Concept Analysis (FCA), a computing technique based in partial orders that allows the user to examine the structural properties of binary data based on which subsets of the data set depend on each other. This thesis surveys, in breadth and depth, the current literature related to the use of FCA for bioinformatics, with particular focus on gene expression data. This includes descriptions of current data management techniques specific to FCA, such as lattice reduction, discretization, and variations of FCA to account for different data types. Advantages and shortcomings of using FCA for genomic investigations, as well as the feasibility of using FCA for this application are addressed. Finally, several areas for future doctoral research are proposed. Adviser: Jitender S. Deogu

    9th International Workshop "What can FCA do for Artificial Intelligence?" (FCA4AI 2021)

    Get PDF
    International audienceFormal Concept Analysis (FCA) is a mathematically well-founded theory aimed at classification and knowledge discovery that can be used for many purposes in Artificial Intelligence (AI). The objective of the ninth edition of the FCA4AI workshop (see http://www.fca4ai.hse.ru/) is to investigate several issues such as: how can FCA support various AI activities (knowledge discovery, knowledge engineering, machine learning, data mining, information retrieval, recommendation...), how can FCA be extended in order to help AI researchers to solve new and complex problems in their domains, and how FCA can play a role in current trends in AI such as explainable AI and fairness of algorithms in decision making.The workshop was held in co-location with IJCAI 2021, Montréal, Canada, August, 28 2021
    corecore