887 research outputs found

    Extracting correlated parameters on multicore architectures

    Get PDF
    16 pagesInternational audienceIn this paper, we present a new approach relevant to the discovery of correlated patterns, based on the use of multicore architectures. Our work rests on a full KDD system and allows one to extract Decision Correlation Rules based on the Chi-squared criterion that include a target column from any database. To achieve this objective, we use a levelwise algorithm as well as contingency vectors, an alternate and more powerful representation of contingency tables, in order to prune the search space. The goal is to parallelize the processing associated with the extraction of relevant rules. The parallelization invokes the PPL (Parallel Patterns Library), which allows a simultaneous access to the whole available cores / processors on modern computers. We nally present rst results on the reached performance gains

    StochKit-FF: Efficient Systems Biology on Multicore Architectures

    Full text link
    The stochastic modelling of biological systems is an informative, and in some cases, very adequate technique, which may however result in being more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and exploits the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    Advances in Engineering Software for Multicore Systems

    Get PDF
    The vast amounts of data to be processed by today’s applications demand higher computational power. To meet application requirements and achieve reasonable application performance, it becomes increasingly profitable, or even necessary, to exploit any available hardware parallelism. For both new and legacy applications, successful parallelization is often subject to high cost and price. This chapter proposes a set of methods that employ an optimistic semi-automatic approach, which enables programmers to exploit parallelism on modern hardware architectures. It provides a set of methods, including an LLVM-based tool, to help programmers identify the most promising parallelization targets and understand the key types of parallelism. The approach reduces the manual effort needed for parallelization. A contribution of this work is an efficient profiling method to determine the control and data dependences for performing parallelism discovery or other types of code analysis. Another contribution is a method for detecting code sections where parallel design patterns might be applicable and suggesting relevant code transformations. Our approach efficiently reports detailed runtime data dependences. It accurately identifies opportunities for parallelism and the appropriate type of parallelism to use as task-based or loop-based

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Optimisation of computational fluid dynamics applications on multicore and manycore architectures

    Get PDF
    This thesis presents a number of optimisations used for mapping the underlying computational patterns of finite volume CFD applications onto the architectural features of modern multicore and manycore processors. Their effectiveness and impact is demonstrated in a block-structured and an unstructured code of representative size to industrial applications and across a variety of processor architectures that make up contemporary high-performance computing systems. The importance of vectorization and the ways through which this can be achieved is demonstrated in both structured and unstructured solvers together with the impact that the underlying data layout can have on performance. The utility of auto-tuning for ensuring performance portability across multiple architectures is demonstrated and used for selecting optimal parameters such as prefetch distances for software prefetching or tile sizes for strip mining/loop tiling. On the manycore architectures, running more than one thread per physical core is found to be crucial for good performance on processors with in-order core designs but not required on out-of-order architectures. For architectures with high-bandwidth memory packages, their exploitation, whether explicitly or implicitly, is shown to be imperative for best performance. The implementation of all of these optimisations led to application speed-ups ranging between 2.7X and 3X on the multicore CPUs and 5.7X to 24X on the manycore processors.Open Acces
    corecore