131 research outputs found

    Revealing the ISO/IEC 9126-1 Clique Tree for COTS Software Evaluation

    Get PDF
    Previous research has shown that acyclic dependency models, if they exist, can be extracted from software quality standards and that these models can be used to assess software safety and product quality. In the case of commercial off-the-shelf (COTS) software, the extracted dependency model can be used in a probabilistic Bayesian network context for COTS software evaluation. Furthermore, while experts typically employ Bayesian networks to encode domain knowledge, secondary structures (clique trees) from Bayesian network graphs can be used to determine the probabilistic distribution of any software variable (attribute) using any clique that contains that variable. Secondary structures, therefore, provide insight into the fundamental nature of graphical networks. This paper will apply secondary structure calculations to reveal the clique tree of the acyclic dependency model extracted from the ISO/IEC 9126-1 software quality standard. Suggestions will be provided to describe how the clique tree may be exploited to aid efficient transformation of an evaluation model

    The Integrated Hazard Analysis Integrator

    Get PDF
    Hazard analysis addresses hazards that arise in the design, development, manufacturing, construction, facilities, transportation, operations and disposal activities associated with hardware, software, maintenance, operations and environments. An integrated hazard is an event or condition that is caused by or controlled by multiple systems, elements, or subsystems. Integrated hazard analysis (IHA) is especially daunting and ambitious for large, complex systems such as NASA s Constellation program which incorporates program, systems and element components that impact others (International Space Station, public, International Partners, etc.). An appropriate IHA should identify all hazards, causes, controls and verifications used to mitigate the risk of catastrophic loss of crew, vehicle and/or mission. Unfortunately, in the current age of increased technology dependence, there is the tendency to sometimes overlook the necessary and sufficient qualifications of the integrator, that is, the person/team that identifies the parts, analyzes the architectural structure, aligns the analysis with the program plan and then communicates/coordinates with large and small components, each contributing necessary hardware, software and/or information to prevent catastrophic loss. As viewed from both Challenger and Columbia accidents, lack of appropriate communication, management errors and lack of resources dedicated to safety were cited as major contributors to these fatalities. From the accident reports, it would appear that the organizational impact of managers, integrators and safety personnel contributes more significantly to mission success and mission failure than purely technological components. If this is so, then organizations who sincerely desire mission success must put as much effort in selecting managers and integrators as they do when designing the hardware, writing the software code and analyzing competitive proposals. This paper will discuss the necessary and sufficient requirements of one of the significant contributors to mission success, the IHA integrator. Discussions will be provided to describe both the mindset required as well as deleterious assumptions/behaviors to avoid when integrating within a large scale system

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    A Planning Approach to Migrating Domain-specific Legacy Systems into Service Oriented Architecture

    Get PDF
    The planning work prior to implementing an SOA migration project is very important for its success. Up to now, most of this kind of work has been manual work. An SOA migration planning approach based on intelligent information processing methods is addressed to semi-automate the manual work. This thesis will investigate the principle research question: “How can we obtain SOA migration planning schemas (semi-) automatically instead of by traditional manual work in order to determine if legacy software systems should be migrated to SOA computation environment?”. The controlled experiment research method has been adopted for directing research throughout the whole thesis. Data mining methods are used to analyse SOA migration source and migration targets. The mined information will be the supplementation of traditional analysis results. Text similarity measurement methods are used to measure the matching relationship between migration sources and migration targets. It implements the quantitative analysis of matching relationships instead of common qualitative analysis. Concretely, an association rule and sequence pattern mining algorithms are proposed to analyse legacy assets and domain logics for establishing a Service model and a Component model. These two algorithms can mine all motifs with any min-support number without assuming any ordering. It is better than the existing algorithms for establishing Service models and Component models in SOA migration situations. Two matching strategies based on keyword level and superficial semantic levels are described, which can calculate the degree of similarity between legacy components and domain services effectively. Two decision-making methods based on similarity matrix and hybrid information are investigated, which are for creating SOA migration planning schemas. Finally a simple evaluation method is depicted. Two case studies on migrating e-learning legacy systems to SOA have been explored. The results show the proposed approach is encouraging and applicable. Therefore, the SOA migration planning schemas can be created semi-automatically instead of by traditional manual work by using data mining and text similarity measurement methods

    On Design and Realization of New Generation Misson-critial Application Systems

    Get PDF
    Mission-critical system typically refers to a project or system for which the success is vital to the mission of the underlying organization. The failure or delayed completion of the tasks in mission-critical systems may cause severe financial loss, even human casualties. For example, failure of an accurate and timely forecast of Hurricane Rita in September 2005 caused enormous financial loss and several deaths. As such, real-time guarantee and reliability have always been two key foci of mission-critical system design. Many factors affect real-time guarantee and reliability. From the software design perspective, which is the focus of this paper, three aspects are most important. The first of these is how to design a single application to effectively support real-time requirement and improve reliability, the second is how to integrate different applications in a cluster environment to guarantee real-time requirement and improve reliability, and the third is how to effectively coordinate distributed applications to support real-time requirements and improve reliability. Following these three aspects, this dissertation proposes and implements three novel methodologies: real-time component based single node application development, real-time workflow-based cluster application integration, and real-time distributed admission control. For ease of understanding, we introduce these three methodologies and implementations in three real-world mission-critical application systems: single node mission-critical system, cluster environment mission-critical system, and wide-area network mission-critical system. We study full-scale design and implementation of these mission-critical systems, more specifically: 1) For the single node system, we introduce a real-time component based application model, a novel design methodology, and based on the model and methodology, we implement a real-time component based Enterprise JavaBean (EJB) System. Through component based design, efficient resource management and scheduling, we show that our model and design methodology can effectively improve system reliability and guarantee real-time requirement. 2) For the system in a cluster environment, we introduce a new application model, a real-time workflow-based application integration methodology, and based on the model and methodology, we implement a data center management system for the Southeastern Universities Research Association (SURA) project. We show that our methodology can greatly simplify the design of such a system and make it easier to meet deadline requirements, while improving system reliability through the reuse of fully tested legacy models. 3) For the system in a wide area network, we narrow our focus to a representative VoIP system and introduce a general distributed real-time VoIP system model, a novel system design methodology, and an implementation. We show that with our new model and architectural design mechanism, we can provide effective real-time requirement for Voice over Internet Protocol (VoIP)
    corecore