1,627 research outputs found

    A FLEXIBLE METHODOLOGY FOR OUTDOOR/INDOOR BUILDING RECONSTRUCTION FROM OCCLUDED POINT CLOUDS

    Get PDF
    Terrestrial Laser Scanning data are increasingly used in building survey not only in cultural heritage domain but also for as-built modelling of large and medium size civil structures. However, raw point clouds derived from laser scanning generally not directly ready for the generation of such models. A time-consuming manual modelling phase has to be taken into account. In addition the large presence of occlusion and clutter may turn out in low-quality building models when state-of-the-art automatic modelling procedures are applied. This paper presents an automated procedure to convert raw point clouds into semantically-enriched building models. The developed method mainly focuses on a geometrical complexity typical of modern buildings with clear prevalence of planar features A characteristic of this methodology is the possibility to work with outdoor and indoor building environments. In order to operate under severe occlusions and clutter a couple of completion algorithms were designed to generate a plausible and reliable model. Finally, some examples of the developed modelling procedure are presented and discussed

    Consistent Density Scanning and Information Extraction From Point Clouds of Building Interiors

    Get PDF
    Over the last decade, 3D range scanning systems have improved considerably enabling the designers to capture large and complex domains such as building interiors. The captured point cloud is processed to extract specific Building Information Models, where the main research challenge is to simultaneously handle huge and cohesive point clouds representing multiple objects, occluded features and vast geometric diversity. These domain characteristics increase the data complexities and thus make it difficult to extract accurate information models from the captured point clouds. The research work presented in this thesis improves the information extraction pipeline with the development of novel algorithms for consistent density scanning and information extraction automation for building interiors. A restricted density-based, scan planning methodology computes the number of scans to cover large linear domains while ensuring desired data density and reducing rigorous post-processing of data sets. The research work further develops effective algorithms to transform the captured data into information models in terms of domain features (layouts), meaningful data clusters (segmented data) and specific shape attributes (occluded boundaries) having better practical utility. Initially, a direct point-based simplification and layout extraction algorithm is presented that can handle the cohesive point clouds by adaptive simplification and an accurate layout extraction approach without generating an intermediate model. Further, three information extraction algorithms are presented that transforms point clouds into meaningful clusters. The novelty of these algorithms lies in the fact that they work directly on point clouds by exploiting their inherent characteristic. First a rapid data clustering algorithm is presented to quickly identify objects in the scanned scene using a robust hue, saturation and value (H S V) color model for better scene understanding. A hierarchical clustering algorithm is developed to handle the vast geometric diversity ranging from planar walls to complex freeform objects. The shape adaptive parameters help to segment planar as well as complex interiors whereas combining color and geometry based segmentation criterion improves clustering reliability and identifies unique clusters from geometrically similar regions. Finally, a progressive scan line based, side-ratio constraint algorithm is presented to identify occluded boundary data points by investigating their spatial discontinuity

    AUTOMATIC FAÇADE SEGMENTATION FOR THERMAL RETROFIT

    Get PDF
    Abstract. In this paper we present an automated method to derive highly detailed 3D vector models of modern building facades from terrestrial laser scanning data. The developed procedure can be divided into two main steps: firstly the main elements constituting the facade are identified by means of a segmentation process, then the 3D vector model is generated including some priors on architectural scenes. The identification of main facade elements is based on random sampling and detection of planar elements including topology information in the process to reduce under- and over-segmentation problems. Finally, the prevalence of straight lines and orthogonal intersections in the vector model generation phase is exploited to set additional constraints to enforce automated modeling. Contemporary a further classification is performed, enriching the data with semantics by means of a classification tree. The main application field for these vector models is the design of external insulation thermal retrofit. In particular, in this paper we present a possible application for energy efficiency evaluation of buildings by mean of Infrared Thermography data overlaid to the facade model

    Quantifying the urban forest environment using dense discrete return LiDAR and aerial color imagery for segmentation and object-level biomass assessment

    Get PDF
    The urban forest is becoming increasingly important in the contexts of urban green space and recreation, carbon sequestration and emission offsets, and socio-economic impacts. In addition to aesthetic value, these green spaces remove airborne pollutants, preserve natural resources, and mitigate adverse climate changes, among other benefits. A great deal of attention recently has been paid to urban forest management. However, the comprehensive monitoring of urban vegetation for carbon sequestration and storage is an under-explored research area. Such an assessment of carbon stores often requires information at the individual tree level, necessitating the proper masking of vegetation from the built environment, as well as delineation of individual tree crowns. As an alternative to expensive and time-consuming manual surveys, remote sensing can be used effectively in characterizing the urban vegetation and man-made objects. Many studies in this field have made use of aerial and multispectral/hyperspectral imagery over cities. The emergence of light detection and ranging (LiDAR) technology, however, has provided new impetus to the effort of extracting objects and characterizing their 3D attributes - LiDAR has been used successfully to model buildings and urban trees. However, challenges remain when using such structural information only, and researchers have investigated the use of fusion-based approaches that combine LiDAR and aerial imagery to extract objects, thereby allowing the complementary characteristics of the two modalities to be utilized. In this study, a fusion-based classification method was implemented between high spatial resolution aerial color (RGB) imagery and co-registered LiDAR point clouds to classify urban vegetation and buildings from other urban classes/cover types. Structural, as well as spectral features, were used in the classification method. These features included height, flatness, and the distribution of normal surface vectors from LiDAR data, along with a non-calibrated LiDAR-based vegetation index, derived from combining LiDAR intensity at 1064 nm with the red channel of the RGB imagery. This novel index was dubbed the LiDAR-infused difference vegetation index (LDVI). Classification results indicated good separation between buildings and vegetation, with an overall accuracy of 92% and a kappa statistic of 0.85. A multi-tiered delineation algorithm subsequently was developed to extract individual tree crowns from the identified tree clusters, followed by the application of species-independent biomass models based on LiDAR-derived tree attributes in regression analysis. These LiDAR-based biomass assessments were conducted for individual trees, as well as for clusters of trees, in cases where proper delineation of individual trees was impossible. The detection accuracy of the tree delineation algorithm was 70%. The LiDAR-derived biomass estimates were validated against allometry-based biomass estimates that were computed from field-measured tree data. It was found out that LiDAR-derived tree volume, area, and different distribution parameters of height (e.g., maximum height, mean of height) are important to model biomass. The best biomass model for the tree clusters and the individual trees showed an adjusted R-Squared value of 0.93 and 0.58, respectively. The results of this study showed that the developed fusion-based classification approach using LiDAR and aerial color (RGB) imagery is capable of producing good object detection accuracy. It was concluded that the LDVI can be used in vegetation detection and can act as a substitute for the normalized difference vegetation index (NDVI), when near-infrared multiband imagery is not available. Furthermore, the utility of LiDAR for characterizing the urban forest and associated biomass was proven. This work could have significant impact on the rapid and accurate assessment of urban green spaces and associated carbon monitoring and management

    An Approach Of Automatic Reconstruction Of Building Models For Virtual Cities From Open Resources

    Get PDF
    Along with the ever-increasing popularity of virtual reality technology in recent years, 3D city models have been used in different applications, such as urban planning, disaster management, tourism, entertainment, and video games. Currently, those models are mainly reconstructed from access-restricted data sources such as LiDAR point clouds, airborne images, satellite images, and UAV (uncrewed air vehicle) images with a focus on structural illustration of buildings’ contours and layouts. To help make 3D models closer to their real-life counterparts, this thesis research proposes a new approach for the automatic reconstruction of building models from open resources. In this approach, first, building shapes are reconstructed by using the structural and geographic information retrievable from the open repository of OpenStreetMap (OSM). Later, images available from the street view of Google maps are used to extract information of the exterior appearance of buildings for texture mapping onto their boundaries. The constructed 3D environment is used as prior knowledge for the navigation purposes in a self-driving car. The static objects from the 3D model are compared with the real-time images of static objects to reduce the computation time by eliminating them from the detection proces
    • …
    corecore