1,797 research outputs found

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    Interspecies Knowledge Transfer for Facial Keypoint Detection

    Full text link
    We present a method for localizing facial keypoints on animals by transferring knowledge gained from human faces. Instead of directly finetuning a network trained to detect keypoints on human faces to animal faces (which is sub-optimal since human and animal faces can look quite different), we propose to first adapt the animal images to the pre-trained human detection network by correcting for the differences in animal and human face shape. We first find the nearest human neighbors for each animal image using an unsupervised shape matching method. We use these matches to train a thin plate spline warping network to warp each animal face to look more human-like. The warping network is then jointly finetuned with a pre-trained human facial keypoint detection network using an animal dataset. We demonstrate state-of-the-art results on both horse and sheep facial keypoint detection, and significant improvement over simple finetuning, especially when training data is scarce. Additionally, we present a new dataset with 3717 images with horse face and facial keypoint annotations.Comment: CVPR 2017 Camera Read
    • …
    corecore