2,204 research outputs found

    Comprehensive Monitor-Oriented Compensation Programming

    Full text link
    Compensation programming is typically used in the programming of web service compositions whose correct implementation is crucial due to their handling of security-critical activities such as financial transactions. While traditional exception handling depends on the state of the system at the moment of failure, compensation programming is significantly more challenging and dynamic because it is dependent on the runtime execution flow - with the history of behaviour of the system at the moment of failure affecting how to apply compensation. To address this dynamic element, we propose the use of runtime monitors to facilitate compensation programming, with monitors enabling the modeller to be able to implicitly reason in terms of the runtime control flow, thus separating the concerns of system building and compensation modelling. Our approach is instantiated into an architecture and shown to be applicable to a case study.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Programming compensations for system-monitor synchronisation

    Get PDF
    In security-critical systems such as online establishments, runtime analysis is crucial to detect and handle any unexpected behaviour. Due to resource-intensive operations carried out by such systems, particularly during peak times, synchronous monitoring is not always an option. Asynchronous monitoring, on the other hand, would not compete for system resources but might detect anomalies when the system has progressed further, and it is already too late to apply a remedy. A conciliatory approach is to apply asynchronous monitoring but synchronising when there is a high risk of a problem arising. Although this does not solve the issue of problems arising when in asynchronous mode, compensations have been shown to be useful to restore the system to a sane state when this occurs. In this paper we propose a novel notation, compensating automata, which enables the user to program the compensation logic within the monitor, extending our earlier results by allowing for richer compensation structures. This approach moves the compensation closer to the violation information while simultaneously relieving the system of the additional burden.peer-reviewe

    Recovery within long running transactions

    Get PDF
    As computer systems continue to grow in complexity, the possibilities of failure increase. At the same time, the increase in computer system pervasiveness in day-to-day activities brought along increased expectations on their reliability. This has led to the need for effective and automatic error recovery techniques to resolve failures. Transactions enable the handling of failure propagation over concurrent systems due to dependencies, restoring the system to the point before the failure occurred. However, in various settings, especially when interacting with the real world, reversal is not possible. The notion of compensations has been long advocated as a way of addressing this issue, through the specification of activities which can be executed to undo partial transactions. Still, there is no accepted standard theory; the literature offers a plethora of distinct formalisms and approaches. In this survey, we review the compensations from a theoretical point of view by: (i) giving a historic account of the evolution of compensating transactions; (ii) delineating and describing a number of design options involved; (iii) presenting a number of formalisms found in the literature, exposing similarities and differences; (iv) comparing formal notions of compensation correctness; (v) giving insights regarding the application of compensations in practice; and (vi) discussing current and future research trends in the area.peer-reviewe

    Transactions in dynamic reactive environments

    Get PDF
    Most of todayā€™s systems, especially when related to the Web or to multi-agent systems, are not standalone or independent, but are part of a greater ecosystem, where they need to interact with other entities, react to complex changes in the environment, and act both over its own knowledge base and on the external environment itself. Moreover, these systems are clearly not static, but are constantly evolving due to the execution of self updates or external actions. Whenever actions and updates are possible, the need to ensure properties regarding the outcome of performing such actions emerges. Originally purposed in the context of databases, transactions solve this problem by guaranteeing atomicity, consistency, isolation and durability of a special set of actions. However, current transaction solutions fail to guarantee such properties in dynamic environments, since they cannot combine transaction execution with reactive features, or with the execution of actions over domains that the system does not completely control (thus making rolling back a non-viable proposition). In this thesis, we investigate what and how transaction properties can be ensured over these dynamic environments. To achieve this goal, we provide logic-based solutions, based on Transaction Logic, to precisely model and execute transactions in such environments, and where knowledge bases can be defined by arbitrary logic theories.FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT) - grant SFRH/BD/64038/2009, and conceived within project ERRO (PTDC/EIA-CCO/121823/2010

    Precise Modelling of Compensating Business Transactions and its Application to BPEL

    No full text
    We describe the StAC language which can be used to specify the orchestration of activities in long running business transactions. Long running business transactions use compensation to cope with exceptions. StAC supports sequential and parallel behaviour as well as exception and compensation handling. We also show how the B notation may be combined with StAC to specify the data aspects of transactions. The combination of StAC and B provides a rich formal notation which allows for succinct and precise specification of business transactions. BPEL is an industry standard language for specifying business transactions and includes compensation constructs. We show how a substantial subset of BPEL can be mapped to StAC thus demonstrating the expressiveness of StAC and providing a formal semantics for BPEL

    Extending and Relating Semantic Models of Compensating CSP

    No full text
    Business transactions involve multiple partners coordinating and interacting with each other. These transactions have hierarchies of activities which need to be orchestrated. Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults in a long running transaction due to interaction with multiple partners. The compensation mechanism handles faults that can arise in a long running transaction. Based on the framework of Hoare's CSP process algebra, Butler et al introduced Compensating CSP (cCSP), a language to model long-running transactions. The language introduces a method to declare a transaction as a process and it has constructs for orchestration of compensation. Butler et al also defines a trace semantics for cCSP. In this thesis, the semantic models of compensating CSP are extended by defining an operational semantics, describing how the state of a program changes during its execution. The semantics is encoded into Prolog to animate the specification. The semantic models are further extended to define the synchronisation of processes. The notion of partial behaviour is defined to model the behaviour of deadlock that arises during process synchronisation. A correspondence relationship is then defined between the semantic models and proved by using structural induction. Proving the correspondence means that any of the presentation can be accepted as a primary definition of the meaning of the language and each definition can be used correctly at different times, and for different purposes. The semantic models and their relationships are mechanised by using the theorem prover PVS. The semantic models are embedded in PVS by using Shallow embedding. The relationships between semantic models are proved by mutual structural induction. The mechanisation overcomes the problems in hand proofs and improves the scalability of the approach

    An Environment for Flexible Advanced Compensations of Web Service Transactions

    Get PDF

    Compensation-aware runtime monitoring

    Get PDF
    To avoid large overheads induced by runtime monitoring, the use of asynchronous log-based monitoring is sometimes adopted ā€” even though this implies that the system may proceed further despite having reached an anomalous state. Any actions performed by the system after the error occurring are undesirable, since for instance, an unchecked malicious user may perform unauthorized actions. Since stopping such actions is not feasible, in this paper we investigate the use of compensations to enable the undoing of actions, thus enriching asynchronous monitoring with the ability to restore the system to the original state in which the anomaly occurred. Furthermore, we show how allowing the monitor to adaptively synchronise and desynchronise with the system is also possible and report on the use of the approach on an industrial case study of a financial transaction system.peer-reviewe
    • ā€¦
    corecore