2,147 research outputs found

    The design of an effective sensor fusion model for condition monitoring systems of turning processes

    Get PDF
    High energy price and the increasing requirements of quality and low cost of products have created an urgent need to implement new technologies in current automated manufacturing environments. Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the essential technologies that provide the competitive advantage in many manufacturing environments. This research aims to develop an effective sensor fusion model for turning processes for the detection of tool wear. Multi-sensors combined with a novelty detection algorithm and Learning Vector Quantisation (LVQ) neural networks are used in this research to detect tool wear and provide diagnostic and prognostic information. A novel approach, termed ASPST, (Automated Sensor and Signal Processing Selection System for Turning) is used to select the most appropriate sensors and signal processing methods. The aim is to reduce the number of sensors needed in the overall system and reduce the cost. The ASPST approach is based on simplifying complex sensory signals into a group of Sensory Characteristic Features (SCFs) and evaluating the sensitivity of these SCFs in detecting tool wear. A wide range of sensory signals (cutting forces, strain, acceleration, acoustic emission and sound) and signal processing methods are also implemented to verify the capability of the approach. A cost reduction method is also implemented based on eliminating the least utilised sensor in an attempt to reduce the overall cost of the system without sacrificing the capability of the condition monitoring system. The experimental results prove that the suggested approach provides a responsive and effective solution in monitoring tool wear in turning with reduced time and cost

    Optimization with artificial intelligence in additive manufacturing: a systematic review

    Get PDF
    In situations requiring high levels of customization and limited production volumes, additive manufacturing (AM) is a frequently utilized technique with several benefits. To properly configure all the parameters required to produce final goods of the utmost quality, AM calls for qualified designers and experienced operators. This research demonstrates how, in this scenario, artificial intelligence (AI) could significantly enable designers and operators to enhance additive manufacturing. Thus, 48 papers have been selected from the comprehensive collection of research using a systematic literature review to assess the possibilities that AI may bring to AM. This review aims to better understand the current state of AI methodologies that can be applied to optimize AM technologies and the potential future developments and applications of AI algorithms in AM. Through a detailed discussion, it emerges that AI might increase the efficiency of the procedures associated with AM, from simulation optimization to in-process monitoring

    A triple-modality ultrasound computed tomography based on full-waveform data for industrial processes

    Get PDF

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio
    • …
    corecore