952 research outputs found

    Real Image Denoising with Feature Attention

    Full text link
    Deep convolutional neural networks perform better on images containing spatially invariant noise (synthetic noise); however, their performance is limited on real-noisy photographs and requires multiple stage network modeling. To advance the practicability of denoising algorithms, this paper proposes a novel single-stage blind real image denoising network (RIDNet) by employing a modular architecture. We use a residual on the residual structure to ease the flow of low-frequency information and apply feature attention to exploit the channel dependencies. Furthermore, the evaluation in terms of quantitative metrics and visual quality on three synthetic and four real noisy datasets against 19 state-of-the-art algorithms demonstrate the superiority of our RIDNet.Comment: Accepted in ICCV (Oral), 201

    Adaptive Image Denoising by Mixture Adaptation

    Full text link
    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the Expectation-Maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad-hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper: First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. Experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms.Comment: 15 page

    Connecting Image Denoising and High-Level Vision Tasks via Deep Learning

    Full text link
    Image denoising and high-level vision tasks are usually handled independently in the conventional practice of computer vision, and their connection is fragile. In this paper, we cope with the two jointly and explore the mutual influence between them with the focus on two questions, namely (1) how image denoising can help improving high-level vision tasks, and (2) how the semantic information from high-level vision tasks can be used to guide image denoising. First for image denoising we propose a convolutional neural network in which convolutions are conducted in various spatial resolutions via downsampling and upsampling operations in order to fuse and exploit contextual information on different scales. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We experimentally show that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network produces more visually appealing results. Extensive experiments demonstrate the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning. The code is available online: https://github.com/Ding-Liu/DeepDenoisingComment: arXiv admin note: text overlap with arXiv:1706.0428

    Multi-band Weighted lpl_p Norm Minimization for Image Denoising

    Full text link
    Low rank matrix approximation (LRMA) has drawn increasing attention in recent years, due to its wide range of applications in computer vision and machine learning. However, LRMA, achieved by nuclear norm minimization (NNM), tends to over-shrink the rank components with the same threshold and ignore the differences between rank components. To address this problem, we propose a flexible and precise model named multi-band weighted lpl_p norm minimization (MBWPNM). The proposed MBWPNM not only gives more accurate approximation with a Schatten pp-norm, but also considers the prior knowledge where different rank components have different importance. We analyze the solution of MBWPNM and prove that MBWPNM is equivalent to a non-convex lpl_p norm subproblems under certain weight condition, whose global optimum can be solved by a generalized soft-thresholding algorithm. We then adopt the MBWPNM algorithm to color and multispectral image denoising. Extensive experiments on additive white Gaussian noise removal and realistic noise removal demonstrate that the proposed MBWPNM achieves a better performance than several state-of-art algorithms.Comment: accepted by Information Science

    Blur Removal via Blurred-Noisy Image Pair

    Full text link
    Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this paper, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acquired in low-light situations: (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics

    Learning Deep Image Priors for Blind Image Denoising

    Full text link
    Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising method by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on H\mathcal{H}-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation

    Joint group and residual sparse coding for image compressive sensing

    Full text link
    Nonlocal self-similarity and group sparsity have been widely utilized in image compressive sensing (CS). However, when the sampling rate is low, the internal prior information of degraded images may be not enough for accurate restoration, resulting in loss of image edges and details. In this paper, we propose a joint group and residual sparse coding method for CS image recovery (JGRSC-CS). In the proposed JGRSC-CS, patch group is treated as the basic unit of sparse coding and two dictionaries (namely internal and external dictionaries) are applied to exploit the sparse representation of each group simultaneously. The internal self-adaptive dictionary is used to remove artifacts, and an external Gaussian Mixture Model (GMM) dictionary, learned from clean training images, is used to enhance details and texture. To make the proposed method effective and robust, the split Bregman method is adopted to reconstruct the whole image. Experimental results manifest the proposed JGRSC-CS algorithm outperforms existing state-of-the-art methods in both peak signal to noise ratio (PSNR) and visual quality.Comment: 27 pages, 7 figure

    Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image

    Full text link
    Supervised deep networks have achieved promisingperformance on image denoising, by learning image priors andnoise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised andunsupervised networks ignore either its particular image prior, the noise statistics, or both. That is, the networks learned from external images inherently suffer from a domain gap problem: the image priors and noise statistics are very different between the training and test images. This problem becomes more clear when dealing with the signal dependent realistic noise. To circumvent this problem, in this work, we propose a novel "Noisy-As-Clean" (NAC) strategy of training self-supervised denoising networks. Specifically, the corrupted test image is directly taken as the "clean" target, while the inputs are synthetic images consisted of this corrupted image and a second and similar corruption. A simple but useful observation on our NAC is: as long as the noise is weak, it is feasible to learn a self-supervised network only with the corrupted image, approximating the optimal parameters of a supervised network learned with pairs of noisy and clean images. Experiments on synthetic and realistic noise removal demonstrate that, the DnCNN and ResNet networks trained with our self-supervised NAC strategy achieve comparable or better performance than the original ones and previous supervised/unsupervised/self-supervised networks. The code is publicly available at https://github.com/csjunxu/Noisy-As-Clean.Comment: 12 pages, 9 figures, 6 tables, the first two authors contribute equall

    Reconstructing the Noise Manifold for Image Denoising

    Full text link
    Deep Convolutional Neural Networks (CNNs) have been successfully used in many low-level vision problems like image denoising. Although the conditional image generation techniques have led to large improvements in this task, there has been little effort in providing conditional generative adversarial networks (cGAN)[42] with an explicit way of understanding the image noise for object-independent denoising reliable for real-world applications. The task of leveraging structures in the target space is unstable due to the complexity of patterns in natural scenes, so the presence of unnatural artifacts or over-smoothed image areas cannot be avoided. To fill the gap, in this work we introduce the idea of a cGAN which explicitly leverages structure in the image noise space. By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold. This idea brings many advantages while it can be appended at the end of any denoiser to significantly improve its performance. Based on our experiments, our model substantially outperforms existing state-of-the-art architectures, resulting in denoised images with less oversmoothing and better detail.Comment: 18 pages, 8 figure

    Zero-order Reverse Filtering

    Full text link
    In this paper, we study an unconventional but practically meaningful reversibility problem of commonly used image filters. We broadly define filters as operations to smooth images or to produce layers via global or local algorithms. And we raise the intriguingly problem if they are reservable to the status before filtering. To answer it, we present a novel strategy to understand general filter via contraction mappings on a metric space. A very simple yet effective zero-order algorithm is proposed. It is able to practically reverse most filters with low computational cost. We present quite a few experiments in the paper and supplementary file to thoroughly verify its performance. This method can also be generalized to solve other inverse problems and enables new applications.Comment: 9 pages, submitted to conferenc
    • …
    corecore