614 research outputs found

    Toric moment mappings and Riemannian structures

    Full text link
    Coadjoint orbits for the group SO(6) parametrize Riemannian G-reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian structures on the Iwasawa manifold.Comment: 25 pages, 14 figures; Geometriae Dedicata 2012, Toric moment mappings and Riemannian structures, available at http://www.springerlink.com/content/yn86k22mv18p8ku2

    The extension problem for partial Boolean structures in Quantum Mechanics

    Full text link
    Alternative partial Boolean structures, implicit in the discussion of classical representability of sets of quantum mechanical predictions, are characterized, with definite general conclusions on the equivalence of the approaches going back to Bell and Kochen-Specker. An algebraic approach is presented, allowing for a discussion of partial classical extension, amounting to reduction of the number of contexts, classical representability arising as a special case. As a result, known techniques are generalized and some of the associated computational difficulties overcome. The implications on the discussion of Boole-Bell inequalities are indicated.Comment: A number of misprints have been corrected and some terminology changed in order to avoid possible ambiguitie

    Relation spaces of hyperplane arrangements and modules defined by graphs of fiber zonotopes

    Full text link
    We study the exactness of certain combinatorially defined complexes which generalize the Orlik-Solomon algebra of a geometric lattice. The main results pertain to complex reflection arrangements and their restrictions. In particular, we consider the corresponding relation complexes and give a simple proof of the nn-formality of these hyperplane arrangements. As an application, we are able to bound the Castelnouvo-Mumford regularity of certain modules over polynomial rings associated to Coxeter arrangements (real reflection arrangements) and their restrictions. The modules in question are defined using the relation complex of the Coxeter arrangement and fiber polytopes of the dual Coxeter zonotope. They generalize the algebra of piecewise polynomial functions on the original arrangement

    Construction and Analysis of Projected Deformed Products

    Full text link
    We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and for the analysis of deformed products such that specified faces (e.g. all the k-faces) are ``strictly preserved'' under projection. Thus, starting from an arbitrary neighborly simplicial (d-2)-polytope Q on n-1 vertices we construct a deformed n-cube, whose projection to the last dcoordinates yields a neighborly cubical d-polytope. As an extension of thecubical case, we construct matrix representations of deformed products of(even) polygons (DPPs), which have a projection to d-space that retains the complete (\lfloor \tfrac{d}{2} \rfloor - 1)-skeleton. In both cases the combinatorial structure of the images under projection is completely determined by the neighborly polytope Q: Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig & Ziegler (2000) as well as of the ``projected deformed products of polygons'' that were announced by Ziegler (2004), a family of 4-polytopes whose ``fatness'' gets arbitrarily close to 9.Comment: 20 pages, 5 figure
    corecore