80 research outputs found

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Integrated IT and SDN Orchestration of multi-domain multi-layer transport networks

    Get PDF
    Telecom operators networks' management and control remains partitioned by technology, equipment supplier and networking layer. In some segments, the network operations are highly costly due to the need of the individual, and even manual, configuration of the network equipment by highly specialized personnel. In multi-vendor networks, expensive and never ending integration processes between Network Management Systems (NMSs) and the rest of systems (OSSs, BSSs) is a common situation, due to lack of adoption of standard interfaces in the management systems of the different equipment suppliers. Moreover, the increasing impact of the new traffic flows introduced by the deployment of massive Data Centers (DCs) is also imposing new challenges that traditional networking is not ready to overcome. The Fifth Generation of Mobile Technology (5G) is also introducing stringent network requirements such as the need of connecting to the network billions of new devices in IoT paradigm, new ultra-low latency applications (i.e., remote surgery) and vehicular communications. All these new services, together with enhanced broadband network access, are supposed to be delivered over the same network infrastructure. In this PhD Thesis, an holistic view of Network and Cloud Computing resources, based on the recent innovations introduced by Software Defined Networking (SDN), is proposed as the solution for designing an end-to-end multi-layer, multi-technology and multi-domain cloud and transport network management architecture, capable to offer end-to-end services from the DC networks to customers access networks and the virtualization of network resources, allowing new ways of slicing the network resources for the forthcoming 5G deployments. The first contribution of this PhD Thesis deals with the design and validation of SDN based network orchestration architectures capable to improve the current solutions for the management and control of multi-layer, multi-domain backbone transport networks. These problems have been assessed and progressively solved by different control and management architectures which has been designed and evaluated in real evaluation environments. One of the major findings of this work has been the need of developed a common information model for transport network's management, capable to describe the resources and services of multilayer networks. In this line, the Control Orchestration Protocol (COP) has been proposed as a first contriution towards an standard management interface based on the main principles driven by SDN. Furthermore, this PhD Thesis introduces a novel architecture capable to coordinate the management of IT computing resources together with inter- and intra-DC networks. The provisioning and migration of virtual machines together with the dynamic reconfiguration of the network has been successfully demonstrated in a feasible timescale. Moreover, a resource optimization engine is introduced in the architecture to introduce optimization algorithms capable to solve allocation problems such the optimal deployment of Virtual Machine Graphs over different DCs locations minimizing the inter-DC network resources allocation. A baseline blocking probability results over different network loads are also presented. The third major contribution is the result of the previous two. With a converged cloud and network infrastructure controlled and operated jointly, the holistic view of the network allows the on-demand provisioning of network slices consisting of dedicated network and cloud resources over a distributed DC infrastructure interconnected by an optical transport network. The last chapters of this thesis discuss the management and orchestration of 5G slices based over the control and management components designed in the previous chapters. The design of one of the first network slicing architectures and the deployment of a 5G network slice in a real Testbed, is one of the major contributions of this PhD Thesis.La gestión y el control de las redes de los operadores de red (Telcos), todavía hoy, está segmentado por tecnología, por proveedor de equipamiento y por capa de red. En algunos segmentos (por ejemplo en IP) la operación de la red es tremendamente costosa, ya que en muchos casos aún se requiere con guración individual, e incluso manual, de los equipos por parte de personal altamente especializado. En redes con múltiples proveedores, los procesos de integración entre los sistemas de gestión de red (NMS) y el resto de sistemas (p. ej., OSS/BSS) son habitualmente largos y extremadamente costosos debido a la falta de adopción de interfaces estándar por parte de los diferentes proveedores de red. Además, el impacto creciente en las redes de transporte de los nuevos flujos de tráfico introducidos por el despliegue masivo de Data Centers (DC), introduce nuevos desafíos que las arquitecturas de gestión y control de las redes tradicionales no están preparadas para afrontar. La quinta generación de tecnología móvil (5G) introduce nuevos requisitos de red, como la necesidad de conectar a la red billones de dispositivos nuevos (Internet de las cosas - IoT), aplicaciones de ultra baja latencia (p. ej., cirugía a distancia) y las comunicaciones vehiculares. Todos estos servicios, junto con un acceso mejorado a la red de banda ancha, deberán ser proporcionados a través de la misma infraestructura de red. Esta tesis doctoral propone una visión holística de los recursos de red y cloud, basada en los principios introducidos por Software Defined Networking (SDN), como la solución para el diseño de una arquitectura de gestión extremo a extremo (E2E) para escenarios de red multi-capa y multi-dominio, capaz de ofrecer servicios de E2E, desde las redes intra-DC hasta las redes de acceso, y ofrecer ademas virtualización de los recursos de la red, permitiendo nuevas formas de segmentación en las redes de transporte y la infrastructura de cloud, para los próximos despliegues de 5G. La primera contribución de esta tesis consiste en la validación de arquitecturas de orquestración de red, basadas en SDN, para la gestión y control de redes de transporte troncales multi-dominio y multi-capa. Estos problemas (gestion de redes multi-capa y multi-dominio), han sido evaluados de manera incremental, mediante el diseño y la evaluación experimental, en entornos de pruebas reales, de diferentes arquitecturas de control y gestión. Uno de los principales hallazgos de este trabajo ha sido la necesidad de un modelo de información común para las interfaces de gestión entre entidades de control SDN. En esta línea, el Protocolo de Control Orchestration (COP) ha sido propuesto como interfaz de gestión de red estándar para redes SDN de transporte multi-capa. Además, en esta tesis presentamos una arquitectura capaz de coordinar la gestión de los recursos IT y red. La provisión y la migración de máquinas virtuales junto con la reconfiguración dinámica de la red, han sido demostradas con éxito en una escala de tiempo factible. Además, la arquitectura incorpora una plataforma para la ejecución de algoritmos de optimización de recursos capaces de resolver diferentes problemas de asignación, como el despliegue óptimo de Grafos de Máquinas Virtuales (VMG) en diferentes DCs que minimizan la asignación de recursos de red. Esta tesis propone una solución para este problema, que ha sido evaluada en terminos de probabilidad de bloqueo para diferentes cargas de red. La tercera contribución es el resultado de las dos anteriores. La arquitectura integrada de red y cloud presentada permite la creación bajo demanda de "network slices", que consisten en sub-conjuntos de recursos de red y cloud dedicados para diferentes clientes sobre una infraestructura común. El diseño de una de las primeras arquitecturas de "network slicing" y el despliegue de un "slice" de red 5G totalmente operativo en un Testbed real, es una de las principales contribuciones de esta tesis.La gestió i el control de les xarxes dels operadors de telecomunicacions (Telcos), encara avui, està segmentat per tecnologia, per proveïdors d’equipament i per capes de xarxa. En alguns segments (Per exemple en IP) l’operació de la xarxa és tremendament costosa, ja que en molts casos encara es requereix de configuració individual, i fins i tot manual, dels equips per part de personal altament especialitzat. En xarxes amb múltiples proveïdors, els processos d’integració entre els Sistemes de gestió de xarxa (NMS) i la resta de sistemes (per exemple, Sistemes de suport d’operacions - OSS i Sistemes de suport de negocis - BSS) són habitualment interminables i extremadament costosos a causa de la falta d’adopció d’interfícies estàndard per part dels diferents proveïdors de xarxa. A més, l’impacte creixent en les xarxes de transport dels nous fluxos de trànsit introduïts pel desplegament massius de Data Centers (DC), introdueix nous desafiaments que les arquitectures de gestió i control de les xarxes tradicionals que no estan llestes per afrontar. Per acabar de descriure el context, la cinquena generació de tecnologia mòbil (5G) també presenta nous requisits de xarxa altament exigents, com la necessitat de connectar a la xarxa milers de milions de dispositius nous, dins el context de l’Internet de les coses (IOT), o les noves aplicacions d’ultra baixa latència (com ara la cirurgia a distància) i les comunicacions vehiculars. Se suposa que tots aquests nous serveis, juntament amb l’accés millorat a la xarxa de banda ampla, es lliuraran a través de la mateixa infraestructura de xarxa. Aquesta tesi doctoral proposa una visió holística dels recursos de xarxa i cloud, basada en els principis introduïts per Software Defined Networking (SDN), com la solució per al disseny de una arquitectura de gestió extrem a extrem per a escenaris de xarxa multi-capa, multi-domini i consistents en múltiples tecnologies de transport. Aquesta arquitectura de gestió i control de xarxes transport i recursos IT, ha de ser capaç d’oferir serveis d’extrem a extrem, des de les xarxes intra-DC fins a les xarxes d’accés dels clients i oferir a més virtualització dels recursos de la xarxa, obrint la porta a noves formes de segmentació a les xarxes de transport i la infrastructura de cloud, pels propers desplegaments de 5G. La primera contribució d’aquesta tesi doctoral consisteix en la validació de diferents arquitectures d’orquestració de xarxa basades en SDN capaces de millorar les solucions existents per a la gestió i control de xarxes de transport troncals multi-domini i multicapa. Aquests problemes (gestió de xarxes multicapa i multi-domini), han estat avaluats de manera incremental, mitjançant el disseny i l’avaluació experimental, en entorns de proves reals, de diferents arquitectures de control i gestió. Un dels principals troballes d’aquest treball ha estat la necessitat de dissenyar un model d’informació comú per a les interfícies de gestió de xarxes, capaç de descriure els recursos i serveis de la xarxes transport multicapa. En aquesta línia, el Protocol de Control Orchestration (COP, en les seves sigles en anglès) ha estat proposat en aquesta Tesi, com una primera contribució cap a una interfície de gestió de xarxa estàndard basada en els principis bàsics de SDN. A més, en aquesta tesi presentem una arquitectura innovadora capaç de coordinar la gestió de els recursos IT juntament amb les xarxes inter i intra-DC. L’aprovisionament i la migració de màquines virtuals juntament amb la reconfiguració dinàmica de la xarxa, ha estat demostrat amb èxit en una escala de temps factible. A més, l’arquitectura incorpora una plataforma per a l’execució d’algorismes d’optimització de recursos, capaços de resoldre diferents problemes d’assignació, com el desplegament òptim de Grafs de Màquines Virtuals (VMG) en diferents ubicacions de DC que minimitzen la assignació de recursos de xarxa entre DC. També es presenta una solució bàsica per a aquest problema, així com els resultats de probabilitat de bloqueig per a diferents càrregues de xarxa. La tercera contribució principal és el resultat dels dos anteriors. Amb una infraestructura de xarxa i cloud convergent, controlada i operada de manera conjunta, la visió holística de la xarxa permet l’aprovisionament sota demanda de "network slices" que consisteixen en subconjunts de recursos d’xarxa i cloud, dedicats per a diferents clients, sobre una infraestructura de Data Centers distribuïda i interconnectada per una xarxa de transport òptica. Els últims capítols d’aquesta tesi tracten sobre la gestió i organització de "network slices" per a xarxes 5G en funció dels components de control i administració dissenyats i desenvolupats en els capítols anteriors. El disseny d’una de les primeres arquitectures de "network slicing" i el desplegament d’un "slice" de xarxa 5G totalment operatiu en un Testbed real, és una de les principals contribucions d’aquesta tesi.Postprint (published version

    Coordinated Computation of Multi-layer Paths via Inter-layer PCE Communication: Standards, Interoperability and Deployment

    Get PDF
    The Path Computation Element (PCE) is positioned nowadays as one of the solutions that almost every carrier will eventually deploy. The PCE architecture as well as a number of components, including the PCE Communication Protocol (PCEP), have been standardized by the IETF. However, a number of challenges remain to be solved on its way from standards to deployment. In particular, the existing proposals for multilayer path computation within the PCE framework need to be further developed and tested, before considering their possible integration into operational networks. This is especially true for the interoperability of the various PCE implementations and the extensions such as the Virtual Network Topology Manager (VNTM) which cannot be taken for granted. This paper presents a functional implementation of coordinated computation of multilayer paths supported through inter-layer PCE communication, where one PCE is developed by industry and the other as an open-source effort. To this end, we consider an IP/MPLS network deployed over a Wavelength Switched Optical Network (WSON), each of which deploying its own PCE, in an attempt to create an inter-operable multilayer solution. We discuss the key challenges that the research community will face in this area, which in turn will drive a considerable part of the upcoming efforts in terms of standardizationPostprint (published version

    IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks

    Get PDF
    Wavelength Switched Optical Networks (WSON) were designed with the premise that all channels in a network have the same spectrum needs, based on the ITU-T DWDM grid. However, this rigid grid-based approach is not adapted to the spectrum requirements of the signals that are best candidates for long-reach transmission and high-speed data rates of 400Gbps and beyond. An innovative approach is to evolve the fixed DWDM grid to a flexible grid, in which the optical spectrum is partitioned into fixed-sized spectrum slices. This allows facilitating the required amount of optical bandwidth and spectrum for an elastic optical connection to be dynamically and adaptively allocated by assigning the necessary number of slices of spectrum. The ICT IDEALIST project will provide the architectural design, protocol specification, implementation, evaluation and standardization of a control plane and a network and service management system. This architecture and tools are necessary to introduce dynamicity, elasticity and adaptation in flexi-grid DWDM networks. This paper provides an overview of the objectives, framework, functional requirements and use cases of the elastic control plane and the adaptive network and service management system targeted in the ICT IDEALIST project

    Experimental Demonstration of Segment Routing

    Get PDF

    Next generation control of transport networks

    Get PDF
    It is widely understood by telecom operators and industry analysts that bandwidth demand is increasing dramatically, year on year, with typical growth figures of 50% for Internet-based traffic [5]. This trend means that the consumers will have both a wide variety of devices attaching to their networks and a range of high bandwidth service requirements. The corresponding impact is the effect on the traffic engineered network (often referred to as the “transport network”) to ensure that the current rate of growth of network traffic is supported and meets predicted future demands. As traffic demands increase and newer services continuously arise, novel network elements are needed to provide more flexibility, scalability, resilience, and adaptability to today’s transport network. The transport network provides transparent traffic engineered communication of user, application, and device traffic between attached clients (software and hardware) and establishing and maintaining point-to-point or point-to-multipoint connections. The research documented in this thesis was based on three initial research questions posed while performing research at British Telecom research labs and investigating control of transport networks of future transport networks: 1. How can we meet Internet bandwidth growth yet minimise network costs? 2. Which enabling network technologies might be leveraged to control network layers and functions cooperatively, instead of separated network layer and technology control? 3. Is it possible to utilise both centralised and distributed control mechanisms for automation and traffic optimisation? This thesis aims to provide the classification, motivation, invention, and evolution of a next generation control framework for transport networks, and special consideration of delivering broadcast video traffic to UK subscribers. The document outlines pertinent telecoms technology and current art, how requirements I gathered, and research I conducted, and by which the transport control framework functional components are identified and selected, and by which method the architecture was implemented and applied to key research projects requiring next generation control capabilities, both at British Telecom and the wider research community. Finally, in the closing chapters, the thesis outlines the next steps for ongoing research and development of the transport network framework and key areas for further study

    Analysis of Inter-Domain Label Switched Path (LSP) Recovery

    Full text link
    corecore