1,470 research outputs found

    Extensions of the parametric families of divergences used in statistical inference

    Get PDF
    summary:We propose a simple method of construction of new families of ϕ\phi%-divergences. This method called convex standardization is applicable to convex and concave functions ψ(t)\psi(t) twice continuously differentiable in a neighborhood of t=1t=1 with nonzero second derivative at the point t=1t=1. Using this method we introduce several extensions of the LeCam, power, % \chi^a and Matusita divergences. The extended families are shown to connect smoothly these divergences with the Kullback divergence or they connect various pairs of these particular divergences themselves. We investigate also the metric properties of divergences from these extended families

    A new test procedure of independence in copula models via chi-square-divergence

    Full text link
    We introduce a new test procedure of independence in the framework of parametric copulas with unknown marginals. The method is based essentially on the dual representation of χ2\chi^2-divergence on signed finite measures. The asymptotic properties of the proposed estimate and the test statistic are studied under the null and alternative hypotheses, with simple and standard limit distributions both when the parameter is an interior point or not.Comment: 23 pages (2 figures). Submitted to publicatio

    The Minimum S-Divergence Estimator under Continuous Models: The Basu-Lindsay Approach

    Full text link
    Robust inference based on the minimization of statistical divergences has proved to be a useful alternative to the classical maximum likelihood based techniques. Recently Ghosh et al. (2013) proposed a general class of divergence measures for robust statistical inference, named the S-Divergence Family. Ghosh (2014) discussed its asymptotic properties for the discrete model of densities. In the present paper, we develop the asymptotic properties of the proposed minimum S-Divergence estimators under continuous models. Here we use the Basu-Lindsay approach (1994) of smoothing the model densities that, unlike previous approaches, avoids much of the complications of the kernel bandwidth selection. Illustrations are presented to support the performance of the resulting estimators both in terms of efficiency and robustness through extensive simulation studies and real data examples.Comment: Pre-Print, 34 page

    On a family of test statistics for discretely observed diffusion processes

    Full text link
    We consider parametric hypotheses testing for multidimensional ergodic diffusion processes observed at discrete time. We propose a family of test statistics, related to the so called ϕ\phi-divergence measures. By taking into account the quasi-likelihood approach developed for studying the stochastic differential equations, it is proved that the tests in this family are all asymptotically distribution free. In other words, our test statistics weakly converge to the chi squared distribution. Furthermore, our test statistic is compared with the quasi likelihood ratio test. In the case of contiguous alternatives, it is also possible to study in detail the power function of the tests. Although all the tests in this family are asymptotically equivalent, we show by Monte Carlo analysis that, in the small sample case, the performance of the test strictly depends on the choice of the function ϕ\phi. Furthermore, in this framework, the simulations show that there are not uniformly most powerful tests

    On preferred point geometry in statistics

    Get PDF
    A brief synopsis of progress in differential geometry in statistics is followed by a note of some points of tension in the developing relationship between these disciplines. The preferred point nature of much of statistics is described and suggests the adoption of a corresponding geometry which reduces these tensions. Applications of preferred point geometry in statistics are then reviewed. These include extensions of statistical manifolds, a statistical interpretation of duality in Amari’s expected geometry, and removal of the apparent incompatibility between (Kullback-Leibler) divergence and geodesic distance. Equivalences between a number of new expected preferred point geometries are established and a new characterisation of total flatness shown. A preferred point geometry of influence analysis is briefly indicated. Technical details are kept to a minimum throughout to improve accessibility
    corecore