1,187 research outputs found

    Separation Property for wB- and wS-regular Languages

    Full text link
    In this paper we show that {\omega}B- and {\omega}S-regular languages satisfy the following separation-type theorem If L1,L2 are disjoint languages of {\omega}-words both recognised by {\omega}B- (resp. {\omega}S)-automata then there exists an {\omega}-regular language Lsep that contains L1, and whose complement contains L2. In particular, if a language and its complement are recognised by {\omega}B- (resp. {\omega}S)-automata then the language is {\omega}-regular. The result is especially interesting because, as shown by Boja\'nczyk and Colcombet, {\omega}B-regular languages are complements of {\omega}S-regular languages. Therefore, the above theorem shows that these are two mutually dual classes that both have the separation property. Usually (e.g. in descriptive set theory or recursion theory) exactly one class from a pair C, Cc has the separation property. The proof technique reduces the separation property for {\omega}-word languages to profinite languages using Ramsey's theorem and topological methods. After that reduction, the analysis of the separation property in the profinite monoid is relatively simple. The whole construction is technically not complicated, moreover it seems to be quite extensible. The paper uses a framework for the analysis of B- and S-regular languages in the context of the profinite monoid that was proposed by Toru\'nczyk

    Computational Complexity of the Minimum Cost Homomorphism Problem on Three-Element Domains

    Get PDF
    In this paper we study the computational complexity of the (extended) minimum cost homomorphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint relations and cost functions that are allowed to appear in instances. A wide range of natural combinatorial optimisation problems can be expressed as Min-Cost-Homs and a classification of their complexity would be highly desirable, both from a direct, applied point of view as well as from a theoretical perspective. Min-Cost-Hom can be understood either as a flexible optimisation version of the constraint satisfaction problem (CSP) or a restriction of the (general-valued) valued constraint satisfaction problem (VCSP). Other optimisation versions of CSPs such as the minimum solution problem (Min-Sol) and the minimum ones problem (Min-Ones) are special cases of Min-Cost-Hom. The study of VCSPs has recently seen remarkable progress. A complete classification for the complexity of finite-valued languages on arbitrary finite domains has been obtained Thapper and Zivny [STOC'13]. However, understanding the complexity of languages that are not finite-valued appears to be more difficult. Min-Cost-Hom allows us to study problematic languages of this type without having to deal with with the full generality of the VCSP. A recent classification for the complexity of three-element Min-Sol, Uppman [ICALP'13], takes a step in this direction. In this paper we extend this result considerably by determining the complexity of three-element Min-Cost-Hom
    • …
    corecore